Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 12(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35683724

RESUMO

In diverse living organisms, bionanocoatings provide multiple functionalities, to the surfaces they cover. We have, previously, identified the molecular mechanisms of Turing-based self-assembly of insect corneal nanocoatings and developed forward-engineering approaches to construct multifunctional soft bionic nanocoatings, encompassing the Drosophila protein Retinin. Here, we expand the versatility of the bionic nanocoatings, by identifying and using diverse Retinin-like proteins and different methods of their metallization, using nickel, silver, and copper ions. Comparative assessment, of the resulting bactericidal, antiviral, and cytotoxic properties, identifies the best protocols, to construct safe and anti-infective metalized bionic nanocoatings. Upscaled application of these protocols, to various public surfaces, may represent a safe and economic approach to limit hazardous infections.

2.
ACS Appl Mater Interfaces ; 13(20): 23481-23488, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33974394

RESUMO

Light plays paramount functions for living beings in nature. In addition to color, the polarization of light is used by many animals for navigation and communication. In this study, we describe the light polarizing role of special nanostructures coating cuticular surfaces of diverse arthropods. These structures are built as parallel nanoscale ridges covering the eyes of the sunlight-navigating spider Drassodes lapidosus and of the water pond-swarming black fly Simulium vittatum, as well as the light-emitting abdominal lantern of the firefly Aquatica lateralis. Exact topography and dimensions of the parallel nanoridges provide different light polarizing efficiencies and wavelength sensitivity. Optical modeling confirms that the nanoscale ridges are responsible for the spectral polarization dependency. Co-opting from our recent work on the self-assembly of Drosophila corneal nanostructures, we engineer arthropod-like parallel nanoridges on artificial surfaces, which recapitulate the light polarization effects. Our work highlights the fundamental importance of nanocoatings in arthropods for the light polarization management and provides a new biomimetic approach to produce ordered nanostructures under mild conditions.


Assuntos
Materiais Biomiméticos/química , Biomimética/instrumentação , Modelos Biológicos , Nanoestruturas/química , Óptica e Fotônica/instrumentação , Animais , Bioengenharia , Olho Composto de Artrópodes/química , Córnea/química , Córnea/fisiologia , Drosophila , Vaga-Lumes , Luz , Aranhas
3.
Sci Rep ; 10(1): 21013, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273532

RESUMO

Drosophila melanogaster has been a model for multiple human disease conditions, including cancer. Among Drosophila tissues, the eye development is particularly sensitive to perturbations of the embryonic signaling pathways, whose improper activation in humans underlies various forms of cancer. We have launched the HumanaFly project, whereas human genes expressed in breast cancer patients are screened for their ability to aberrate development of the Drosophila eye, hoping to thus identify novel oncogenes. Here we report identification of a breast cancer transgene, which upon expression in Drosophila produces eye malformation similar to the famous Glazed phenotype discovered by Thomas Morgan and decades later dissected to originate from mis-expression of Wingless (Wg). Wg is the ortholog of human Wnt proteins serving as ligands to initiate the developmental/oncogenic Wnt signaling pathway. Through genetic experiments we identified that this transgene interacted with the Wg production machinery, rather than with Wg signal transduction. In Drosophila imaginal discs, we directly show that the transgene promoted long-range diffusion of Wg, affecting expression of the Wg target genes. The transgene emerged to encode RPS12-a protein of the small ribosomal subunit overexpressed in several cancer types and known to also possess extra-ribosomal functions. Our work identifies RPS12 as an unexpected regulator of secretion and activity of Wnts. As Wnt signaling is particularly important in the context of breast cancer initiation and progression, RPS12 might be implicated in tumorigenesis in this and other Wnt-dependent cancers. Continuation of our HumanaFly project may bring further discoveries on oncogenic mechanisms.


Assuntos
Neoplasias da Mama/genética , Olho Composto de Artrópodes/metabolismo , Proteínas Mitocondriais/genética , Proteínas Ribossômicas/genética , Transgenes , Via de Sinalização Wnt , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Feminino , Humanos , Discos Imaginais/metabolismo , Proteínas Mitocondriais/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo , Proteína Wnt1/genética , Proteína Wnt1/metabolismo
4.
Biomedicines ; 8(10)2020 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-33036271

RESUMO

Several hundred genes have been identified to contribute to epilepsy-the disease affecting 65 million people worldwide. One of these genes is GNAO1 encoding Gαo, the major neuronal α-subunit of heterotrimeric G proteins. An avalanche of dominant de novo mutations in GNAO1 have been recently described in paediatric epileptic patients, suffering, in addition to epilepsy, from motor dysfunction and developmental delay. Although occurring in amino acids conserved from humans to Drosophila, these mutations and their functional consequences have only been poorly analysed at the biochemical or neuronal levels. Adequate animal models to study the molecular aetiology of GNAO1 encephalopathies have also so far been lacking. As the first step towards modeling the disease in Drosophila, we here describe the humanization of the Gαo locus in the fruit fly. A two-step CRISPR/Cas9-mediated replacement was conducted, first substituting the coding exons 2-3 of Gαo with respective human GNAO1 sequences. At the next step, the remaining exons 4-7 were similarly replaced, keeping intact the gene Cyp49a1 embedded in between, as well as the non-coding exons, exon 1 and the surrounding regulatory sequences. The resulting flies, homozygous for the humanized GNAO1 loci, are viable and fertile without any visible phenotypes; their body weight, locomotion, and longevity are also normal. Human Gαo-specific antibodies confirm the endogenous-level expression of the humanized Gαo, which fully replaces the Drosophila functions. The genetic model we established will make it easy to incorporate encephalopathic GNAO1 mutations and will permit intensive investigations into the molecular aetiology of the human disease through the powerful toolkit of Drosophila genetics.

5.
Nature ; 585(7825): 383-389, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32939070

RESUMO

Insect eyes have an anti-reflective coating, owing to nanostructures on the corneal surface creating a gradient of refractive index between that of air and that of the lens material1,2. These nanocoatings have also been shown to provide anti-adhesive functionality3. The morphology of corneal nanocoatings are very diverse in arthropods, with nipple-like structures that can be organized into arrays or fused into ridge-like structures4. This diversity can be attributed to a reaction-diffusion mechanism4 and patterning principles developed by Alan Turing5, which have applications in numerous biological settings6. The nanocoatings on insect corneas are one example of such Turing patterns, and the first known example of nanoscale Turing patterns4. Here we demonstrate a clear link between the morphology and function of the nanocoatings on Drosophila corneas. We find that nanocoatings that consist of individual protrusions have better anti-reflective properties, whereas partially merged structures have better anti-adhesion properties. We use biochemical analysis and genetic modification techniques to reverse engineer the protein Retinin and corneal waxes as the building blocks of the nanostructures. In the context of Turing patterns, these building blocks fulfil the roles of activator and inhibitor, respectively. We then establish low-cost production of Retinin, and mix this synthetic protein with waxes to forward engineer various artificial nanocoatings with insect-like morphology and anti-adhesive or anti-reflective function. Our combined reverse- and forward-engineering approach thus provides a way to economically produce functional nanostructured coatings from biodegradable materials.


Assuntos
Bioengenharia , Córnea/anatomia & histologia , Córnea/fisiologia , Proteínas de Drosophila/química , Drosophila/anatomia & histologia , Proteínas do Olho/química , Nanoestruturas/química , Ceras/química , Adesividade , Análise de Variância , Animais , Córnea/química , Difusão , Drosophila/química , Drosophila/classificação , Drosophila/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Proteínas do Olho/genética , Técnicas de Silenciamento de Genes , Nanomedicina , Ligação Proteica , Engenharia de Proteínas , Dobramento de Proteína
6.
J R Soc Interface ; 15(143)2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29925583

RESUMO

In its evolution, the diverse group of stick and leaf insects (Phasmatodea) has undergone a rapid radiation. These insects evolved specialized structures to adhere to different surfaces typical for their specific ecological environments. The cuticle of their tarsal attachment pads (euplantulae) is known to possess a high diversity of attachment microstructures (AMS) which are suggested to reflect ecological specializations of different groups within phasmids. However, the origin of these microstructures and their developmental background remain largely unknown. Here, based on the detailed scanning electron microscopy study of pad surfaces, we present a theoretical approach to mathematically model an outstanding diversity of phasmid AMS using the reaction-diffusion model by Alan Turing. In general, this model explains pattern formation in nature. For the first time, we were able to identify eight principal patterns and simulate the transitions among these. In addition, intermediate transitional patterns were predicted by the model. The ease of transformation suggests a high adaptability of the microstructures that might explain the rapid evolution of pad characters. We additionally discuss the functional morphology of the different microstructures and their assumed advantages in the context of the ecological background of species.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Membro Posterior , Neópteros , Animais , Membro Posterior/fisiologia , Membro Posterior/ultraestrutura , Neópteros/fisiologia , Neópteros/ultraestrutura
7.
Nat Commun ; 9(1): 876, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491460

RESUMO

G protein-coupled receptors (GPCRs) constitute a large family of receptors that activate intracellular signaling pathways upon detecting specific extracellular ligands. While many aspects of GPCR signaling have been uncovered through decades of studies, some fundamental properties, like its channel capacity-a measure of how much information a given transmission system can reliably transduce-are still debated. Previous studies concluded that GPCRs in individual cells could transmit around one bit of information about the concentration of the ligands, allowing only for a reliable on or off response. Using muscarinic receptor-induced calcium response measured in individual cells upon repeated stimulation, we show that GPCR signaling systems possess a significantly higher capacity. We estimate the channel capacity of this system to be above two, implying that at least four concentration levels of the agonist can be distinguished reliably. These findings shed light on the basic principles of GPCR signaling.


Assuntos
Acetilcolina/farmacologia , Cálcio/metabolismo , Agonistas Muscarínicos/farmacologia , Receptor Muscarínico M3/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Células HEK293 , Humanos , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
8.
J Nanobiotechnology ; 15(1): 61, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28877691

RESUMO

Moth-eye nanostructures are a well-known example of biological antireflective surfaces formed by pseudoregular arrays of nipples and are often used as a template for biomimetic materials. Here, we provide morphological characterization of corneal nanostructures of moths from the Bombycidae family, including strains of domesticated Bombyx mori silk-moth, its wild ancestor Bombyx mandarina, and a more distantly related Apatelodes torrefacta. We find high diversification of the nanostructures and strong antireflective properties they provide. Curiously, the nano-dimple pattern of B. mandarina is found to reduce reflectance as efficiently as the nanopillars of A. torrefacta. Access to genome sequence of Bombyx further permitted us to pinpoint corneal proteins, likely contributing to formation of the antireflective nanocoatings. These findings open the door to bioengineering of nanostructures with novel properties, as well as invite industry to expand traditional moth-eye nanocoatings with the alternative ones described here.


Assuntos
Bombyx/ultraestrutura , Olho Composto de Artrópodes/ultraestrutura , Nanoestruturas/ultraestrutura , Animais , Materiais Biomiméticos/química , Biomimética , Bombyx/química , Olho Composto de Artrópodes/química , Proteínas de Insetos/análise , Luz , Microscopia de Força Atômica , Nanoestruturas/química , Propriedades de Superfície
9.
J Nanobiotechnology ; 15(1): 52, 2017 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-28705169

RESUMO

Moth-eye nanostructures, discovered to coat corneae of certain nocturnal insects, have inspired numerous technological applications to reduce light reflectance from solar cells, light-emitting diodes, and optical detectors. Technological developments require such nanocoatings to possess broadband antireflective properties, transcending the visual light spectrum, in which animals typically operate. Here we describe the corneal nanostructures of the visual organ exclusive in UV sensation of the hunting insect Libelloides macaronius and report their supreme anti-light-reflectance capacity.


Assuntos
Artrópodes/ultraestrutura , Olho Composto de Artrópodes/ultraestrutura , Comportamento Predatório , Animais , Artrópodes/química , Artrópodes/fisiologia , Materiais Biomiméticos/química , Biomimética , Olho Composto de Artrópodes/química , Olho Composto de Artrópodes/fisiologia , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Propriedades de Superfície , Raios Ultravioleta
10.
Proc Natl Acad Sci U S A ; 112(34): 10750-5, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26307762

RESUMO

Nipple-like nanostructures covering the corneal surfaces of moths, butterflies, and Drosophila have been studied by electron and atomic force microscopy, and their antireflective properties have been described. In contrast, corneal nanostructures of the majority of other insect orders have either been unexamined or examined by methods that did not allow precise morphological characterization. Here we provide a comprehensive analysis of corneal surfaces in 23 insect orders, revealing a rich diversity of insect corneal nanocoatings. These nanocoatings are categorized into four major morphological patterns and various transitions between them, many, to our knowledge, never described before. Remarkably, this unexpectedly diverse range of the corneal nanostructures replicates the complete set of Turing patterns, thus likely being a result of processes similar to those modeled by Alan Turing in his famous reaction-diffusion system. These findings reveal a beautiful diversity of insect corneal nanostructures and shed light on their molecular origin and evolutionary diversification. They may also be the first-ever biological example of Turing nanopatterns.


Assuntos
Olho Composto de Artrópodes/ultraestrutura , Córnea/ultraestrutura , Insetos/ultraestrutura , Nanoestruturas/ultraestrutura , Animais , Difusão , Insetos/classificação , Microscopia de Força Atômica , Modelos Químicos , Morfogênese , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...