Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 61(21): 6128-6133, 2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-36256224

RESUMO

We report on the fabrication, experimental measurement, and numerical simulation of sol-gel diffraction grating structures deposited on the end-face of a single mode optical fiber. Using the imprint method, we manufactured surface relief grating structures in four configurations with different grating-relative-to-fiber arrangements. We demonstrate the high quality of the fabricated structures based on atomic force microscopy imaging and their operational characteristics, presenting measured and simulated far-field intensity distributions. Using a numerical model, we simulated the diffraction patterns in the far-field. We obtained strong agreement between the results of the simulations and the experiments in terms of the angular positions of the diffraction peaks. We also investigated the tolerance of fabricated structures to high-power lasers. Among the proposed structures, the most intriguing is the grism fabricated on a fiber end-face using sol-gel imprint technology for the first time, to the best of our knowledge.

2.
Materials (Basel) ; 14(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064371

RESUMO

This paper presents the result of the investigation of organically modified silica (ORMOSIL)-zirconia coatings used to enhance their protective properties, namely corrosion and scratch resistance. Two different materials, i.e., SiO2/ZrO2 and SiO2/GPTMS/ZrO2, were synthesized, measured, and analyzed to find the difference in the used organosilane precursor (dimethyldiethoxysilane and (3-glycidoxypropyl)trimethoxysilane, respectively). SiO2/ZrO2 coatings showed higher hardness than SiO2/GPTMS/ZrO2. Moreover, the value of polarization resistance (Rp) for SiO2/GPTMS/ZrO2 coated 316L steel relative to the uncoated one was obtained. It was nearly 84 times higher. The coating delamination was observed with load 16N. Additionally, the corrosion mitigation for 316L coated by SiO2/GPTMS/ZrO2 was observed even after extended exposure to corrosion agents.

3.
Materials (Basel) ; 12(8)2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31013801

RESUMO

Implants are readily applied as a convenient method of therapy. There is great interest in the prolonged release of active substances from implants. The objective of this work was to evaluate the dissolution kinetics of steroidal anti-inflammatory preparation (SAP) released from novel implants, and to test the influence of the technology on SAP release kinetics. The proposed long-acting preparations may overcome difficulties resulting from repeated injections and often visits to ambulatory clinic, as the stabilizing function of the artificial ligament would be enriched with pharmacological activity. The potential advantages provided by the new coatings of knee implants include the continuous, sustained, and prolonged release of an active substance. The study was carried out using a modified United States Pharmacopoeia (USP) apparatus 4. The amount of SAP was measured spectroscopically. It was revealed that the transport of the drug was mainly a diffusion process. The drug release kinetics was analyzed using zero-, first-, and second-order kinetics as well as Korsmeyer-Peppas, Higuchi, and Hixon-Crowell models. The highest values of the release rate constants were k0 = (7.49 ± 0.05) × 10-5 mg × min-1, k1 = (6.93 ± 0.05) × 10-6 min-1, and k2 = (7.70 ± 0.05) × 10-7 mg-1 × min-1 as calculated according to zero-, first-, and second-order kinetics equations, respectively. The values of the rate constants obtained for the slowest process were k0 = (3.63 ± 0.06) × 10-5 mg × min-1, k1 = (2.50 ± 0.03) × 10-6 min-1, and k2 = (2.80 ± 0.03) × 10-7 mg-1 × min-1. They may suggest the possibility of sustained release of betamethasone from the system. Due to the statistical analysis, differences were observed between most of the studied implants. Incubation, temperature, time of stabilization of layers, and the method of SAP deposition on the matrix affected the drug release.

4.
Materials (Basel) ; 11(2)2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29373540

RESUMO

Corrosion is constantly a major problem of the world economy in the field of metal products, metal processing and other areas that utilise metals. Previously used compounds utilizing hexavalent chromium were amongst the most effective materials for corrosion protection but regulations have been recently introduced that forbid their use. Consequently, there is a huge drive by engineers, technologists and scientists from different disciplines focused on searching a new, more effective and environmentally-friendly means of corrosion protection. One novel group of materials with the potential to solve metal protection problems are sol-gel thin films, which are increasingly interesting as mitigation corrosion barriers. These environmentally-friendly and easy-to-obtain coatings have the promise to be an effective alternative to hexavalent chromium compounds using for anti-corrosion industrial coatings. In this review the authors present a range of different solutions for slow down the corrosion processes of metallic substrates by using the oxides and doped oxides obtained by the sol-gel method. Examples of techniques used to the sol-gel coating examinations, in terms of anti-corrosion protection, are also presented.

5.
Materials (Basel) ; 10(9)2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-28841187

RESUMO

The modification of carbon fibers for improving adhesion between fibers and an epoxy resin in composite materials has become the focus of attention. In this work the carbon fiber coating process has been devised in a way preventing the stiffening and clumping of fibers. To improve interactions between coated fibers and a resin in composites, four types of silica coatings with different organic functional groups (3-aminopropyl-coating 1, 3-mercaptopropyl-coating 2, 2-(3,4-epoxycyclohexyl) ethyl-coating 3, methyl-coating 4) were obtained. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to distinguish the changes of a carbon fibers surface after coating deposition. The thickness of the obtained coatings, including the diversity of thickness, was determined by transmission electron microscopy (TEM). The increase in surface free energy (SFE) of modified fibers, including the distinction between the polar and dispersive parts, was examined by wettability measurements using a tensometric test. The developed coating preparation process allowed to cover fibers separately with nanoscale silica layers, which changed their morphology. The introduction of organic functional groups resulted in surface free energy changes, especially an increase in specific polar surface energy components.

6.
Int J Nanomedicine ; 12: 1639-1645, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28280331

RESUMO

Material surface is a key determinant of host response on implanted biomaterial. Therefore, modification of the implant surface may optimize implant-tissue reactions. Inflammatory reaction is inevitable after biomaterial implantation, but prolonged inflammation may lead to adverse reactions and subsequent implant failure. Proinflammatory activities of cytokines like interleukin (IL)-1, IL-6, and tumor necrosis factor-alpha (TNF-α) are attractive indicators of these processes and ultimately characterize biocompatibility. The objective of the study was to evaluate local cytokine production after implantation of stainless steel 316L (SS) and titanium alloy (Ti6Al4V) biomaterials coated with titanium dioxide (TiO2) and silica (SiO2) coatings prepared by sol-gel method. Biomaterials were implanted into rat femur and after 12 weeks, bones were harvested. Bone-implant tissue interface was evaluated; immunohistochemical staining was performed to identify IL-6, TNF-α, and Caspase-1. Histomorphometry (AxioVision Rel. 4.6.3 software) of tissue samples was performed in order to quantify the cytokine levels. Both the oxide coatings on SS and Ti6Al4V significantly reduced cytokine production. However, the lowest cytokine levels were observed in TiO2 groups. Cytokine content in uncoated groups was lower in Ti6Al4V than in SS, although coating of either metal reduced cytokine production to similar levels. Sol-gel TiO2 or SiO2 coatings reduced significantly the production of proinflammatory cytokines by local tissues, irrespective of the material used as a substrate, that is, either Ti6Al4V or SS. This suggests lower inflammatory response, which directly points out improvement of materials' biocompatibility.


Assuntos
Materiais Revestidos Biocompatíveis/farmacologia , Citocinas/metabolismo , Fêmur/efeitos dos fármacos , Implantes Experimentais , Metais/farmacologia , Transição de Fase , Dióxido de Silício/farmacologia , Titânio/farmacologia , Animais , Imuno-Histoquímica , Interleucina-6/metabolismo , Masculino , Ratos Wistar , Propriedades de Superfície , Fator de Necrose Tumoral alfa/metabolismo
7.
J Biomater Appl ; 30(10): 1517-33, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26801473

RESUMO

In this study, stable, homogenous and thin titania dioxide coatings (TiO2) on stainless steel substrate doped with two dosages of bioactive sphingolipids S1P were fabricated using the sol-gel method. S1P belongs to a family of sphingolipids acting as important extracellular signaling molecules and chemoattractants. This study investigated the effect of TiO2, doped with S1P in two different dosages on cellular response as well as osteogenic differentiation potential of human adipose derived multipotent stromal stem cells (hASC). The authors have shown that S1P mediates hASCs morphology, proliferation activity and population doubling time in a dose-dependent manner. They have also demonstrated that functionalization of TiO2coating with a higher dosage of S1P, i.e. 80 ng/ml [(TiO2/S1P(CII)] activated both S1PR type 1 and type 2 on mRNA level. The results indicated an increase in secretion of BMP-2, Osteopontin and Osteocalcin by osteoblasts progenitor when cultured on [TiO2/S1P(CIIm)]. In addition, the authors observed the highest extracellular matrix mineralization as well as osteonodules formation by the osteoblasts precursors when cultured onto [TiO2/S1P(CIIm)].


Assuntos
Tecido Adiposo/citologia , Materiais Revestidos Biocompatíveis/metabolismo , Lisofosfolipídeos/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Esfingosina/análogos & derivados , Proteína Morfogenética Óssea 2/metabolismo , Diferenciação Celular , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Humanos , Lisofosfolipídeos/química , Pessoa de Meia-Idade , Osteoblastos/metabolismo , Esfingosina/química , Esfingosina/metabolismo , Titânio/química , Titânio/metabolismo
8.
Biomed Res Int ; 2015: 651097, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25710015

RESUMO

The biocompatibility of the bone implants is a crucial factor determining the successful tissue regeneration. The aim of this work was to compare cellular behavior and osteogenic properties of rat adipose-derived multipotent stromal cells (ASCs) and bone marrow multipotent stromal cells (BMSCs) cultured on metallic substrate covered with TiO2 sol-gel-derived nanolayer. The morphology, proliferation rate, and osteogenic differentiation potential of both ASCs and BMSCs propagated on the biomaterials were examined. The potential for osteogenic differentiation of ASCs and BMSCs was determined based on the presence of specific markers of osteogenesis, that is, alkaline phosphatase (ALP), osteopontin (OPN), and osteocalcin (OCL). Additionally, the concentration of calcium and phosphorus in extracellular matrix was determined using energy-dispersive X-ray spectroscopy (SEM-EDX). Obtained results showed that TiO2 layer influenced proliferation activity of ASCs, which manifested by shortening of population doubling time and increase of OPN secretion. However, characteristic features of cells morphology and growth pattern of cultures prompted us to conclude that ultrathin TiO2 layer might also enhance osteodifferentiation of BMSCs. Therefore in our opinion, both populations of MSCs should be used for biological evaluation of biomaterials compatibility, such results may enhance the area of investigations related to regenerative medicine.


Assuntos
Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/fisiologia , Osteoblastos/citologia , Osteoblastos/fisiologia , Osteogênese/fisiologia , Titânio/química , Animais , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Materiais Revestidos Biocompatíveis/síntese química , Teste de Materiais , Ratos , Propriedades de Superfície
9.
J Biomater Appl ; 29(5): 699-714, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25074359

RESUMO

The objective of this study was to determine biocompatibility of zirconia-based coatings obtained by the sol-gel method. Two matrices, ZrO2 and SiO2/ZrO2, were created and applied on stainless steel type 316L with dip-coating technique. The morphology and topography of biomaterials' surface were characterized using energy-dispersive X-ray spectroscopy and atomic force microscopy, while chemical composition was analyzed by Raman spectroscopy. Additionally, wettability and surface free energy were characterized. Biocompatibility of obtained biomaterials was evaluated using an in vitro model employing mesenchymal stem cells (MSCs) of adipose and bone marrow origin. Biological analysis included determination of proliferation activity and morphology of MSCs in cultures on synthesized biomaterials. Osteoinductive properties of biomaterials were determined both in non-osteogenic, as well as osteogenic conditions. The results showed that investigated biomaterials exerted different impact on MSCs. Biomaterial with ZrO2 layer was more biocompatible for adipose-derived MSCs, while SiO2/ZrO2 layer promoted proliferation of bone marrow derived MSCs. Moreover, hybrid coating exhibited greater osteoinductive properties than ZrO2 coating, both on cultures with adipose-derived stromal (stem) cells and bone marrow stromal cells. Observed biological effects may result not only from different chemical composition, but also from diverse wettability. The ZrO2 coating was characterized as hydrophobic layer, while SiO2/ZrO2 exhibited hydrophilic properties. The results obtained suggest that behavior of MSCs in response to the biomaterial may vary depending on their origin, therefore we postulate, that screening analysis of implants' biocompatibility, should incorporate model applying both adipose- and bone marrow derived MSCs.


Assuntos
Materiais Biocompatíveis/química , Materiais Revestidos Biocompatíveis/química , Células-Tronco Mesenquimais/citologia , Dióxido de Silício/química , Aço Inoxidável/química , Zircônio/química , Adipócitos/citologia , Tecido Adiposo/citologia , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Humanos , Teste de Materiais , Microscopia de Força Atômica , Microscopia Eletrônica de Varredura , Osteocalcina/análise , Osteopontina/análise , Transição de Fase , Espectrometria por Raios X , Análise Espectral Raman , Propriedades de Superfície
10.
J Biomater Appl ; 29(3): 465-76, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24825759

RESUMO

Silica-based sol-gel coatings have gained attention in bone therapies and orthopedic applications, due to the biocompatibility and bioactivity, including a high potential for the controlled release both in vitro and in vivo. Bioactive materials are created to facilitate the biocompatibility of orthopedic implants. One of the promising alternatives is biomaterials with immobilized drugs. In this study we demonstrated for the first time novel sol-gel-derived silica coatings with active amino groups (SiO2(NH2)) functionalized with a steroid drug-betamethasone, applied to a substrate 316 L using dip coating technique. The presence of betamethasone in functionalized coatings was directly confirmed by Raman spectroscopy and energy-dispersive X-ray spectroscopic analysis. The wettability was evaluated by the sessile drop method, while the surface free energy was estimated based on the contact angles measured. Our results showed a shift in surface properties from hydrophobic to hydrophilic after application of the coatings. We have investigated the morphology, proliferation factor, and the population doubling time of adipose-derived stem cells for biological purposes. Moreover, the analysis of the distribution and localization of cellular microvesicles was performed to evaluate the influence of functionalized surfaces on cellular cytophysiological activity. Increased proliferation and activation of cells, determined by the observations of microvesicles shedding processes, provided evidence of the availability of the drug. Therefore, we conclude that the sol-gel synthesis proposed here allows to improve the metal substrates and can be successfully used for immobilization of betamethasone. This in turn enables the direct delivery of the drug with implanted material into the wound site, and to stimulate the activity of cells to enhance tissue regeneration.


Assuntos
Tecido Adiposo/citologia , Betametasona/química , Dióxido de Silício/química , Células-Tronco/citologia , Animais , Proliferação de Células , Células Cultivadas , Microscopia Eletrônica de Varredura , Ratos , Ratos Wistar , Espectrometria por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...