Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 345: 118627, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37531861

RESUMO

This paper reviews the current problems and prospects to overcome circular water economy management challenges in European countries. The geopolitical paradigm of water, the water economy, water innovation, water management and regulation in Europe, environmental and safety concerns at water reuse, and technological solutions for water recovery are all covered in this review, which has been prepared in the frame of the COST ACTION (CA, 20133) FULLRECO4US, Working Group (WG) 4. With a Circular Economy approach to water recycling and recovery based on this COST Action, this review paper aims to develop novel, futuristic solutions to overcome the difficulties that the European Union (EU) is currently facing. The detailed review of the current environmental barriers and upcoming difficulties for water reuse in Europe with a Circular Economy vision is another distinctive aspect of this study. It is observed that the biggest challenge in using and recycling water from wastewater treatment plants is dealing with technical, social, political, and economic issues. For instance, geographical differences significantly affect technological problems, and it is effective in terms of social acceptance of the reuse of treated water. Local governmental organizations should support and encourage initiatives to expand water reuse, particularly for agricultural and industrial uses across all of Europe. It should not also be disregarded that the latest hydro politics approach to water management will actively contribute to addressing the issues associated with water scarcity.


Assuntos
Purificação da Água , Água , Europa (Continente) , Purificação da Água/métodos , União Europeia , Agricultura , Reciclagem
2.
Environ Int ; 144: 106035, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32835921

RESUMO

The World Health Organization Global Action Plan recommends integrated surveillance programs as crucial strategies for monitoring antibiotic resistance. Although several national surveillance programs are in place for clinical and veterinary settings, no such schemes exist for monitoring antibiotic-resistant bacteria in the environment. In this transnational study, we developed, validated, and tested a low-cost surveillance and easy to implement approach to evaluate antibiotic resistance in wastewater treatment plants (WWTPs) by targeting cefotaxime-resistant (CTX-R) coliforms as indicators. The rationale for this approach was: i) coliform quantification methods are internationally accepted as indicators of fecal contamination in recreational waters and are therefore routinely applied in analytical labs; ii) CTX-R coliforms are clinically relevant, associated with extended-spectrum ß-lactamases (ESBLs), and are rare in pristine environments. We analyzed 57 WWTPs in 22 countries across Europe, Asia, Africa, Australia, and North America. CTX-R coliforms were ubiquitous in raw sewage and their relative abundance varied significantly (<0.1% to 38.3%), being positively correlated (p < 0.001) with regional atmospheric temperatures. Although most WWTPs removed large proportions of CTX-R coliforms, loads over 103 colony-forming units per mL were occasionally observed in final effluents. We demonstrate that CTX-R coliform monitoring is a feasible and affordable approach to assess wastewater antibiotic resistance status.


Assuntos
Cefotaxima , Purificação da Água , Antibacterianos/farmacologia , Ásia , Austrália , Cefotaxima/farmacologia , Europa (Continente) , América do Norte , Inquéritos e Questionários , Águas Residuárias
3.
Sci Total Environ ; 710: 136312, 2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32050367

RESUMO

Conventional urban wastewater treatment plants (UWTPs) are poorly effective in the removal of most contaminants of emerging concern (CECs), including antibiotics, antibiotic resistant bacteria and antibiotic resistance genes (ARB&ARGs). These contaminants result in some concern for the environment and human health, in particular if UWTPs effluents are reused for crop irrigation. Recently, stakeholders' interest further increased in Europe, because the European Commission is currently developing a regulation on water reuse. Likely, conventional UWTPs will require additional advanced treatment steps to meet water quality limits yet to be officially established for wastewater reuse. Even though it seems that CECs will not be included in the proposed regulation, the aim of this paper is to provide a technical contribution to this discussion as well as to support stakeholders by recommending possible advanced treatment options, in particular with regard to the removal of CECs and ARB&ARGs. Taking into account the current knowledge and the precautionary principle, any new or revised water-related Directive should address such contaminants. Hence, this review paper gathers the efforts of a group of international experts, members of the NEREUS COST Action ES1403, who for three years have been constructively discussing the efficiency of the best available technologies (BATs) for urban wastewater treatment to abate CECs and ARB&ARGs. In particular, ozonation, activated carbon adsorption, chemical disinfectants, UV radiation, advanced oxidation processes (AOPs) and membrane filtration are discussed with regard to their capability to effectively remove CECs and ARB&ARGs, as well as their advantages and drawbacks. Moreover, a comparison among the above-mentioned processes is performed for CECs relevant for crop uptake. Finally, possible treatment trains including the above-discussed BATs are discussed, issuing end-use specific recommendations which will be useful to UWTPs managers to select the most suitable options to be implemented at their own facilities to successfully address wastewater reuse challenges.

4.
Sci Total Environ ; 648: 1052-1081, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30340253

RESUMO

Contaminants of emerging concern (CEC) discharged in effluents of wastewater treatment plants (WWTPs), not specifically designed for their removal, pose serious hazards to human health and ecosystems. Their impact is of particular relevance to wastewater disposal and re-use in agricultural settings due to CEC uptake and accumulation in food crops and consequent diffusion into the food-chain. This is the reason why the chemical CEC discussed in this review have been selected considering, besides recalcitrance, frequency of detection and entity of potential hazards, their relevance for crop uptake. Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) have been included as microbial CEC because of the potential of secondary wastewater treatment to offer conditions favourable to the survival and proliferation of ARB, and dissemination of ARGs. Given the adverse effects of chemical and microbial CEC, their removal is being considered as an additional design criterion, which highlights the necessity of upgrading conventional WWTPs with more effective technologies. In this review, the performance of currently applied biological treatment methods for secondary treatment is analysed. To this end, technological solutions including conventional activated sludge (CAS), membrane bioreactors (MBRs), moving bed biofilm reactors (MBBRs), and nature-based solutions such as constructed wetlands (CWs) are compared for the achievable removal efficiencies of the selected CEC and their potential of acting as reservoirs of ARB&ARGs. With the aim of giving a picture of real systems, this review focuses on data from full-scale and pilot-scale plants treating real urban wastewater. To achieve an integrated assessment, technologies are compared considering also other relevant evaluation parameters such as investment and management costs, complexity of layout and management, present scale of application and need of a post-treatment. Comparison results allow the definition of design and operation strategies for the implementation of CEC removal in WWTPs, when agricultural reuse of effluents is planned.


Assuntos
Produtos Agrícolas/metabolismo , Farmacorresistência Bacteriana , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Reciclagem , Eliminação de Resíduos Líquidos/instrumentação , Águas Residuárias/microbiologia
5.
Water Sci Technol ; 77(3-4): 1115-1126, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29488975

RESUMO

The effectivity of different treatment stages at two large wastewater treatment plants (WWTPs) located in Oslo, Norway, to remove antibiotic resistant Escherichia coli from municipal wastewater was investigated. The WWTPs were effective in reducing the total cultivable E. coli. The E. coli in WWTP samples were mainly resistant to ampicillin (6-27%) and trimethoprim-sulfamethoxazole (5-24%), and, to a lesser extent, tetracycline (3-14%) and ciprofloxacin (0-7%). In the first WWTP, a clear decrease in the percentage of E. coli resistant to these antibiotics was found, with the main removal occurring during physical/chemical treatment. In the second WWTP, the percentage of cultivable resistant E. coli did not display a considerable change. During laboratory-scale membrane filtration of WWTP effluents using ultrafiltration (UF) and nanofiltration (NF) membranes, all E. coli, including those resistant to antibiotics, were removed completely. The results imply that UF and NF processes are potent measures to remove antibiotic resistant bacteria (ARB) during post-treatment of WWTP effluents, thus reducing the potential spread of antibiotic resistance in the receiving aquatic environment.


Assuntos
Resistência Microbiana a Medicamentos , Escherichia coli/isolamento & purificação , Filtração/métodos , Eliminação de Resíduos Líquidos/métodos , Poluentes da Água/isolamento & purificação , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Noruega , Águas Residuárias/química
6.
Membranes (Basel) ; 4(2): 227-42, 2014 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-24957174

RESUMO

Prevention and removal of fouling is often the most energy intensive process in Membrane Bioreactors (MBRs), responsible for 40% to 50% of the total specific energy consumed in submerged MBRs. In the past decade, methods were developed to quantify and qualify fouling, aiming to support optimization in MBR operation. Therefore, there is a need for an evaluation of the lessons learned and how to proceed. In this article, five different methods for measuring MBR activated sludge filterability and critical flux are described, commented and evaluated. Both parameters characterize the fouling potential in full-scale MBRs. The article focuses on the Delft Filtration Characterization method (DFCm) as a convenient tool to characterize sludge properties, namely on data processing, accuracy, reproducibility, reliability, and applicability, defining the boundaries of the DFCm. Significant progress was made concerning fouling measurements in particular by using straight forward approaches focusing on the applicability of the obtained results. Nevertheless, a fouling measurement method is still to be defined which is capable of being unequivocal, concerning the fouling parameters definitions; practical and simple, in terms of set-up and operation; broad and useful, in terms of obtained results. A step forward would be the standardization of the aforementioned method to assess the sludge filtration quality.

7.
Water Sci Technol ; 65(2): 380-92, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22233918

RESUMO

This paper provides an overview of current electric energy consumption of full-scale municipal MBR installations based on literature review and case studies. Energy requirements of several MBRs were linked to operational parameters and reactor performance. Total and specific energy consumption data were analysed on a long-term basis with special attention given to treated flow, design capacity, membrane area and effluent quality. The specific energy consumption of an MBR system is dependent on many factors, such as system design and layout, volume of treated flow, membrane utilization and operational strategy. Operation at optimal flow conditions results in a low specific energy consumption and energy efficient process. Energy consumption of membrane related modules was in the range of 0.5-0.7 kWh/m(3) and specific energy consumption for membrane aeration in flat sheet (FS) was 33-37% higher than in a hollow fibre (HF) system. Aeration is a major energy consumer, often exceeding 50% share of total energy consumption. In consequence, coarse bubble aeration applied for continuous membrane cleaning remains the main target for energy saving actions. Also, a certain potential for energy optimization without immediate danger of affecting the quality of the produced effluent was observed.


Assuntos
Reatores Biológicos , Conservação de Recursos Energéticos , Membranas Artificiais , Eliminação de Resíduos Líquidos/métodos , Análise da Demanda Biológica de Oxigênio , Eletricidade , Nitrogênio/análise , Fósforo/análise , Esgotos , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...