Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 13(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34372027

RESUMO

Experimental protocols aiming at the characterisation of glass transition often suffer from ambiguity. The ambition of the present study is to describe the glass transition in a complex, micro heterogeneous system, the dry rice pasta, in a most unambiguous manner, minimising the influence of technique-specific bias. To this end, we apply an unprecedented combination of experimental techniques. Apart from the usually used NMR and DSC, we employ, in a concurrent manner, neutron transmission, diffraction, and Compton scattering. This enables us to investigate the glass transition over a range of spatio-temporal scales that stretches over seven orders of magnitude. The results obtained by neutron diffraction and DSC reveal that dry rice pasta is almost entirely amorphous. Moreover, the glass transition is evidenced by neutron transmission and diffraction data and manifested as a significant decrease of the average sample number density in the temperature range between 40 and 60 °C. At the microscopic level, our NMR, neutron transmission and Compton scattering results provide evidence of changes in the secondary structure of the starch within the dry rice pasta accompanying the glass transition, whereby the long-range order provided by the polymer structure within the starch present in the dry rice pasta is partially lost.

2.
Analyst ; 144(13): 3936-3941, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31041932

RESUMO

This work introduces the use of mass-selective neutron spectroscopy as an analytical tool for the quantitative and non-destructive detection of hydrogen in bulk media. To this end, systematic measurements have been performed on a series of polyethylene standards of known thickness and density, in order to establish optimal data-acquisition protocols as well as associated limits of detection and quantitation. From this analysis, we conclude that state-of-the-art epithermal-neutron instrumentation enables the detection of aeral molar densities of bulk hydrogen in the µmol cm-2 range. We also discuss potential improvements on the horizon, with a view to broadening the scope of the technique across chemistry, materials science, and engineering.

3.
Phys Chem Chem Phys ; 19(13): 9064-9074, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28304035

RESUMO

We apply a unique sequence of structural and dynamical neutron-scattering techniques, augmented with density-functional electronic-structure calculations, to establish the degree of polymorphism in an archetypal hydrogen-bonded system - crystalline formic acid. Using this combination of experimental and theoretical techniques, the hypothesis by Zelsmann on the coexistence of the ß1 and ß2 phases above 220 K is tested. Contrary to the postulated scenario of proton-transfer-driven phase coexistence, the emerging picture is one of a quantitatively different structural change over this temperature range, whereby the loosening of crystal packing promotes temperature-induced shearing of the hydrogen-bonded chains. The presented work, therefore, solves a fifty-year-old puzzle and provides a suitable framework for the use neutron-Compton-scattering techniques in the exploration of phase polymorphism in condensed matter.

4.
Phys Chem Chem Phys ; 17(46): 31287-96, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26549527

RESUMO

High-resolution spectroscopic measurements using thermal and epithermal neutrons and first-principles calculations within the framework of density-functional theory are used to investigate the nuclear dynamics of light and heavy species in the metastable phase of caesium hydrogen sulfate. Within the generalised-gradient approximation, extensive calculations show that both 'standard' and 'hard' formulations of the Perdew-Burke-Ernzerhof functional supplemented by Tkatchenko-Scheffler dispersion corrections provide an excellent description of the known structure, underlying vibrational density of states, and nuclear momentum distributions measured at 10 and 300 K. Encouraged by the agreement between experiment and computational predictions, we provide a quantitative appraisal of the quantum contributions to nuclear motions in this solid acid. From this analysis, we find that only the heavier caesium atoms reach the classical limit at room temperature. Contrary to naïve expectation, sulfur exhibits a more pronounced quantum character relative to classical predictions than the lighter oxygen atom. We interpret this hitherto unexplored nuclear quantum effect as arising from the tighter binding environment of this species in this technologically relevant material.

5.
Faraday Discuss ; 151: 171-97; discussion 199-212, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22455069

RESUMO

The adsorption of molecular hydrogen (H2) in the alkali-graphite intercalate KC24 has been studied using simultaneous neutron diffraction and Compton scattering. Neutron Compton scattering data for the (H2)xKC24 system (x = 0-2.5) were measured at T = 1.5 K as a function of the relative orientation between the neutron beam and the intercalate c-axis. Synchronous with the above proton-recoil measurements, high-resolution diffraction patterns were measured in backscattering geometry. From these diffraction measurements, the intrinsic mosaicity of the Papyex-based intercalate was determined to be approximately 15 degrees half-width-at-half-maximum, in good agreement with previous studies [Finkelstein et al., Physica B, 2000, 291, 213]. Hydrogen uptake by the intercalate leads to a distinct and readily detectable broadening of the isotropic Compton profile compared to bulk H2, indicative of an enhanced interaction of the H2 molecule with the surrounding solid-state environment. Total proton-recoil intensities also scale linearly with the amount of adsorbed hydrogen. Taking as our starting point previous experimental and theoretical results, the isotropic widths of the proton momentum distributions can be explained on the basis of three energy scales, namely, intramolecular H-H vibrations, followed by H-H librations and H2 centre-of-mass translations. From the coverage dependence of these neutron data, we also establish an upper bound of approximately 10 meV for intermolecular hydrogen-hydrogen interactions. Finally, we observe a weak anisotropy of the width of the proton momentum distributions. Comparison of these experimental data with first-principles predictions indicates that subtle quantum mechanical effects associated with particle delocalisation and exchange lie at the heart of the observed behaviour. Overall, these results demonstrate the suitability and largely untapped potential of neutron Compton scattering to explore H2 uptake by solid-state hosts.

6.
J Biol Chem ; 278(30): 27864-75, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12721305

RESUMO

The Photosystem I (PS I) reaction center contains two branches of nearly symmetric cofactors bound to the PsaA and PsaB heterodimer. From the x-ray crystal structure it is known that Trp697PsaA and Trp677PsaB are pi-stacked with the head group of the phylloquinones and are H-bonded to Ser692PsaA and Ser672PsaB, whereas Arg694PsaA and Arg674PsaB are involved in a H-bonded network of side groups that connects the binding environments of the phylloquinones and FX. The mutants W697FPsaA, W677FPsaB, S692CPsaA, S672CPsaB, R694APsaA, and R674APsaB were constructed and characterized. All mutants grew photoautotrophically, yet all showed diminished growth rates compared with the wild-type, especially at higher light intensities. EPR and electron nuclear double resonance (ENDOR) studies at both room temperature and in frozen solution showed that the PsaB mutants were virtually identical to the wild-type, whereas significant effects were observed in the PsaA mutants. Spin polarized transient EPR spectra of the P700+A1- radical pair show that none of the mutations causes a significant change in the orientation of the measured phylloquinone. Pulsed ENDOR spectra reveal that the W697FPsaA mutation leads to about a 5% increase in the hyperfine coupling of the methyl group on the phylloquinone ring, whereas the S692CPsaA mutation causes a similar decrease in this coupling. The changes in the methyl hyperfine coupling are also reflected in the transient EPR spectra of P700+A1- and the CW EPR spectra of photoaccumulated A1-. We conclude that: (i) the transient EPR spectra at room temperature are predominantly from radical pairs in the PsaA branch of cofactors; (ii) at low temperature the electron cycle involving P700 and A1 similarly occurs along the PsaA branch of cofactors; and (iii) mutation of amino acids in close contact with the PsaA side quinone leads to changes in the spin density distribution of the reduced quinone observed by EPR.


Assuntos
Cianobactérias/fisiologia , Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/genética , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Sítios de Ligação , Western Blotting , Clorofila/química , Cristalografia por Raios X , Dimerização , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Cinética , Luz , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Oxigênio/metabolismo , Mapeamento Físico do Cromossomo , Mutação Puntual , Ligação Proteica , Quinonas/química , Espectrofotometria , Temperatura , Tilacoides/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...