Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903245

RESUMO

This study evaluates the effect of aging in artificial saliva and thermal shocks on the microhardness of the bulk-fill composite compared to the nanohybrid composite. Two commercial composites, Filtek Z550 (3M ESPE) (Z550) and Filtek Bulk-Fill (3M ESPE) (B-F), were tested. The samples were exposed to artificial saliva (AS) for one month (control group). Then, 50% of the samples from each composite were subjected to thermal cycling (temperature range: 5-55 °C, cycle time: 30 s, number of cycles: 10,000) and another 50% were put back into the laboratory incubator for another 25 months of aging in artificial saliva. The samples' microhardness was measured using the Knoop method after each stage of conditioning (after 1 month, after 10,000 thermocycles, after another 25 months of aging). The two composites in the control group differed considerably in hardness (HK = 89 for Z550, HK = 61 for B-F). After thermocycling, the microhardness decrease was for Z550 approximately 22-24% and for B-F approximately 12-15%. Hardness after 26 months of aging decreased for Z550 (approximately 3-5%) and B-F (15-17%). B-F had a significantly lower initial hardness than Z550, but it showed an approximately 10% lower relative reduction in hardness.

2.
Materials (Basel) ; 15(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35160827

RESUMO

Forecasting is one of the cognitive methods based on empirical knowledge supported by appropriate modeling methods that give information about the way the relations between factors and how the phenomenon under study will develop in the future. In this article, a selection is made of a suitable architecture for a predictive model for a set of data obtained during testing of the properties of polymer composites with a matrix in the form of epoxy resin with trade name L285 (Havel Composites) with H285 MGS hardener (Havel Composites), and with the addition of the physical modifier noble alumina with mass percentages of 5%, 10%, 15%, 20% and 25% for the following grain sizes: F220, F240, F280, F320, F360, respectively. In order to select the optimal architecture for the predictive model, the results of the study were tested on five types of predictive model architectures results were tested on five types of prediction model architectures, with five-fold validation, including the mean square error (MSE) metric and R2 determined for Young's modulus (Et), maximum stress (σm), maximum strain (εm) and Shore D hardness (°Sh). Based on the values from the forecasts and the values from the empirical studies, it was found that in 63 cases the forecast should be considered very accurate (this represents 63% of the forecasts that were compared with the experimental results), while 15 forecasts can be described as accurate (15% of the forecasts that were compared with the experimental results). In 20 cases, the MPE value indicated the classification of the forecast as acceptable. As can be seen, only for two forecasts the MPE error takes values classifying them to unacceptable forecasts (2% of forecasts generated for verifiable cases based on experimental results).

3.
Materials (Basel) ; 14(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34832296

RESUMO

The aim of this study was to determine the effect of a selected physical modifier with different granularity and mass percentage on the dynamics of aerospace polymer composites. The tests were carried out on samples made of certified aerospace materials used, among other purposes, for the manufacture of aircraft skin components. The hybrid composites were prepared from L285 resin, H286 hardener, GG 280T carbon fabric in twill 2/2 and alumina (Al2O3, designated as EA in this work). The manufactured composites contained alumina with grain sizes of F220, F240, F280, F320 and F360. The mass proportion of the modifier in the tested samples was 5% and 15%. The tested specimens, as cantilever beams fixed unilaterally, were subjected to kinematic excitation with defined parameters of amplitude and frequency excitation in the basic resonance zone of the structure. The results, obtained as dynamic responses, are presented in the form of amplitude-frequency characteristics. These relationships clearly indicate the variable nature of composite materials due to modifier density and grain size. The novelty of this study is the investigation of the influence of the alumina properties on system dynamics responses.

4.
Materials (Basel) ; 14(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34300741

RESUMO

The paper presents the results of investigations on the glass fiber reinforced composite for the floor panels with quartz powder additions of different percentages in terms of wear resistance, friction coefficient, hardness, and strength. The wear resistance was assessed using the specific wear work parameter determined by the novel tribotester with friction band. It was found that an increase in quartz powder addition to the tested polymer composite does not enhance its mechanical increasingly properties. From the wear tests it can be concluded that only the composite with four layers of glass fibers and 6 wt.% of the quartz powder exhibited improvement of the wear resistance, but its shear strength was lower than that of the two layer specimens with similar powder proportions. On the other hand, the highest friction coefficient's, which is microhardness HV05, shear strength and impact strength were attained for the composite with two layers of glass fibers and 3 wt.% of the quartz powder. Among four layer samples, very close results were obtained for the samples with 10% of powder and insignificantly lower strength were observed for the samples with no powder added. The results revealed that there is no clear trend for the effect of silica filler percentage on the composite performance, which indicates the need for individual purpose-dependent decision making in the design of the glass fiber reinforced composites with quartz powder filler.

5.
Materials (Basel) ; 13(24)2020 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-33339186

RESUMO

The subject of the research is a polymer composite with a matrix base of epoxy resin L285 cured with H285 hardener, and a physical modifier of friction in the form of alundum. The article presents an analysis of findings of tribological examinations. The authors evaluated the influence of the modifier properties in the form of alundum, i.e., mass share and grain size, on the abrasive wear of a composite, defined as loss of weight as well as on roughness parameters and selected mechanical properties. The tribological examinations have been extended by measurements of hardness and density of the prepared composites. The obtained results of tribological examinations showed an increase in the average value of weight loss in relation to the loss of sample weight loss between the cycles. The influence of both the grain size and the mass percentage share of alundum upon the increase in the longitudinal modulus of elasticity was also observed. On the basis of the obtained results, it was found that alundum of grain sizes equal to F220 and F240 exerted the best influence on the reduction of abrasive wear of the tested samples. In the case of F220, it was 14.04% of the average value of the weight loss between the cycles for all percentage shares of the used grains.

6.
Materials (Basel) ; 13(23)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33271957

RESUMO

In this research, an analysis of polymer composite with the matrix of L285-cured hardener H286 and six reinforcement layers of carbon fabric GG 280 T was provided. It involved a comparison of the dynamical behavior responses for three cases of composite structures in the context of the presence of the mass share modifier. The samples with the addition of a physical modifier with varying mass percentages were investigated by being subjected to dynamic tests with specific parameters, i.e., constant excitation amplitude and vibration frequency in the vicinity of the base resonance zone. The analysis allowed for indicating the relationship between the composition of the prepared composites and their dynamic response via stiffness characteristics. In addition, the investigation resulted in determining the range of harmful dynamical operating conditions, which may contribute to damage to the composite structures.

7.
Materials (Basel) ; 13(18)2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32911622

RESUMO

The aim of this study was to examine the impact of weathering and thermal shocks on the abrasive wear of epoxy resin composites reinforced with carbon fabric that are commonly used in aviation. The composite was exposed to degradation in an apparatus simulating weathering and thermal shocks and then subjected to an abrasion process, with and without the presence of water. The abrasive wear was controlled by checking the weight loss as well as by visual inspection. The research findings indicated a significant effect of the presence of water in the process of friction upon the deterioration of composite resistance to abrasion with regard to dry friction. The long-term impact of rapid cyclic temperature changes (temperature difference: from -56.5 °C to +60 °C) and a combined effect of UV-A (0.83 W/m2), along with condensation of vapor and an increased ambient temperature (above 50 °C), influenced an improvement in resistance to abrasive wear. The environment of thermal shocks diminished abrasive wear to a much smaller extent than after exploitation in an environment of weathering but both environments contributed to the degradation of the surface layer. Additionally, the environment with UV-A radiation resulted in exposure of the composite reinforcement already after four months of environmental impact.

8.
Materials (Basel) ; 13(12)2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32545692

RESUMO

The aim of the study is to assess the effect of multi-walled carbon nanotubes (MWCNTs) on the wear behavior of MWCNT-doped epoxy resin. In this study, a laminating resin system designed to meet the standards for motor planes was modified with MWCNTs at mass fractions from 0.0 wt.% to 2.0 wt.%. The properties of the carbon nanotubes were determined in Raman spectroscopy and HR-TEM. An examination of wear behavior was conducted on a linear abraser with a visual inspection on an optical microscope and SEM imaging, mass loss measurement, and evaluation of the wear volume on a profilometer. Moreover, the mechanical properties of MWCNTs/epoxy nanocomposite were evaluated through a tensile test and Shore D hardness test. The study shows that the best wear resistance is achieved for the mass percentage between 0.25 wt.% and 0.5 wt.%. For the same range, the tensile strength reaches the highest values and the hardness the lowest values. Together with surface imaging and a topography analysis, this allowed describing the wear behavior in the friction node and the importance of the properties of the epoxy nanocomposite.

9.
Materials (Basel) ; 13(6)2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32197358

RESUMO

The revolution in the global market of composite materials is evidenced by their increasing use in such segments as the transport, aviation, and wind industries. The innovative aspect of this research is the methodology approach, based on the simultaneous analysis of mechanical and tribological loads of composite materials, which are intended for practical use in the construction of aviation parts. Simultaneously, the methodology allows the composition of the composites used in aviation to be optimized. Therefore, the presented tests show the undefined properties of the new material, which are necessary for verification at the application stage. They are also a starting point for further research planned by the authors related to the improvement of the tribological properties of this material. In this article, the selected mechanical and tribological properties of an aviation polymer composite are investigated with the matrix of L285-cured hardener H286 and six reinforcement layers of carbon fabric GG 280P/T. The structure of a polymer composite has a significant influence on its mechanical properties; thus, a tribological analysis in the context of abrasive wear in reciprocating the movement for the specified polymer composite was performed. Moreover, the research was expanded to dynamic analysis for the discussed composite. This is crucial knowledge of material dynamics in the context of aviation design for the conditions of resonance vibrations. For this reason, experimental dynamical investigations were performed to determine the basic resonance of the material and its dynamics behavior response. The research confirmed the assumed hypotheses related to the abrasive wear process for the newly developed material, as well as reporting an empirical evaluation of the dependencies of the resonance zone from the fabric orientation sets.

10.
Materials (Basel) ; 12(22)2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31698746

RESUMO

This study discusses a quantitative fatigue evaluation of polymer-ceramic composites for dental restorations, i.e., commercial (Filtek Z550) and experimental Ex-nano (G), Ex-flow (G). Their evaluation is based on the following descriptors: mechanical strength, elastic modulus and strain work to fracture. Supposed to reflect factors of environmental degradation conditions, thermal fatigue was simulated with a special computer-controlled device performing algorithms of thermocycling. The specimens intended for the strength test underwent 104 hydro-thermal fatigue cycles. This procedure of thermocycling was preceded by aging, which meant immersing the specimens in artificial saliva at 37 °C for 30 days. The strength tests after aging only and after aging and thermocycles were performed in line with the three-point flexural strength (TFS) test, specified in ISO 4049, and the biaxial flexural strength (BFS) test, specifically piston-on-three-ball in accordance with ISO 6872. Based on the results, it can be stated that composites with higher volume content of inorganic particles after aging only show higher strength than materials with lower filler particle content. For example, the average flexural bending strength of the Ex-flow (G) composite was about 45% lower than the value obtained for the Ex-nano (G) material. The residual strength after thermocycles is significantly lower for the experimental composites, whereas a smaller decrease in strength is recorded for the commercial composites. Decreases in strength were about 4% (Filtek Z550), 43% (Ex-nano (G)), and 29% (Ex-flow (G)) for the BFS test; and about 17% (Filtek Z550), 55% (Ex-nano (G)), 60% (Ex-flow (G)) for the TFS test. The elastic modulus of the experimental composites after only aging is higher (about 42%) than that of the commercial composite, but the elastic modulus of the commercial composite increases significantly after thermocycling. A descriptor known as strain work to fracture turns out to be a good descriptor for evaluating the hydro-thermal fatigue of the tested polymer-ceramic composites.

11.
Acta Bioeng Biomech ; 19(2): 3-10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28869621

RESUMO

PURPOSE: For splinting or designing adhesive bridges, reconstructive composite structures with increased mechanical properties owing to embedded reinforcement fibres are used. The aim of this article was to determine the influence of glass and aramid fibres on the mechanical strength of composites reinforced with these fibres. METHODS: Two polymer-ceramic microhybrid materials: Boston and Herculite were tested. Three types of reinforcement fibres were used: aramid (Podwiazka) with a single layer weave, a single layer weave glass fibre (FSO) and triple layer weave glass fibre (FSO evo). Tests were conducted in accordance with the requirements of ISO 4049:2009. The following material types were chosen for research: Boston, Boston + Podwiazka, Herculite, Herculite + Podwiazka, Herculite + FSO and Herculite + FSO evo. The scope of research included: flexural strength B, bending modulus of elasticity εB and work to failure of the reinforced composite Wfb. Additionally, microscopic observations of fracture occurring in samples were made. RESULTS: In comparison: the Herculite (97.7 MPa) type with the Herculite + FSO evo (177.5 MPa) type was characterized by the highest strength. Fibre reinforcement resulted in decreasing the elasticity modulus: Herculite + reinforcement (6.86 GPa; 6.33 GPa; 6.11 GPa) in comparison with the Herculite (9.84 GPa) and respectively Boston + reinforcement (10.08 GPa) as compared with the Boston (11.81 GPa). CONCLUSIONS: Using glass fibres increases flexural strength of the test composites. Using aramid fibres does not change their strength. The elasticity modulus of the reinforced reconstructive structures decreases after application of either type of fibres. However, their resistance to the crack initiation increases.


Assuntos
Resinas Compostas/química , Materiais Dentários/química , Vidro/química , Polímeros/química , Força Compressiva , Módulo de Elasticidade , Dureza , Teste de Materiais/métodos , Estresse Mecânico , Resistência à Tração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...