Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Microbiol Immunol ; 213(1): 8, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767707

RESUMO

Bacterial resistance to serum is a key virulence factor for the development of systemic infections. The amount of lipopolysaccharide (LPS) and the O-antigen chain length distribution on the outer membrane, predispose Salmonella to escape complement-mediated killing. In Salmonella enterica serovar Enteritidis (S. Enteritidis) a modal distribution of the LPS O-antigen length can be observed. It is characterized by the presence of distinct fractions: low molecular weight LPS, long LPS and very long LPS. In the present work, we investigated the effect of the O-antigen modal length composition of LPS molecules on the surface of S. Enteritidis cells on its ability to evade host complement responses. Therefore, we examined systematically, by using specific deletion mutants, roles of different O-antigen fractions in complement evasion. We developed a method to analyze the average LPS lengths and investigated the interaction of the bacteria and isolated LPS molecules with complement components. Additionally, we assessed the aspect of LPS O-antigen chain length distribution in S. Enteritidis virulence in vivo in the Galleria mellonella infection model. The obtained results of the measurements of the average LPS length confirmed that the method is suitable for measuring the average LPS length in bacterial cells as well as isolated LPS molecules and allows the comparison between strains. In contrast to earlier studies we have used much more precise methodology to assess the LPS molecules average length and modal distribution, also conducted more subtle analysis of complement system activation by lipopolysaccharides of various molecular mass. Data obtained in the complement activation assays clearly demonstrated that S. Enteritidis bacteria require LPS with long O-antigen to resist the complement system and to survive in the G. mellonella infection model.


Assuntos
Proteínas do Sistema Complemento , Modelos Animais de Doenças , Lipopolissacarídeos , Antígenos O , Salmonella enteritidis , Salmonella enteritidis/imunologia , Salmonella enteritidis/patogenicidade , Animais , Antígenos O/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Lipopolissacarídeos/imunologia , Evasão da Resposta Imune , Viabilidade Microbiana , Mariposas/microbiologia , Mariposas/imunologia , Virulência , Infecções por Salmonella/imunologia , Infecções por Salmonella/microbiologia , Salmonelose Animal/imunologia , Salmonelose Animal/microbiologia , Ativação do Complemento , Lepidópteros/imunologia , Lepidópteros/microbiologia
2.
Vet Res ; 54(1): 67, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612766

RESUMO

Gallibacterium anatis biovar haemolytica is a bacterium that is frequently associated with infections of the reproductive tract and respiratory system in poultry. To assess the current prevalence and resistance profile of these bacteria in Poland, we collected and investigated 63 strains of Gallibacterium from diseased domestic poultry flocks including geese, laying hens, breeding hens and an ornamental hen. Detailed characterization of the isolates included the analysis of phenotypic antimicrobial resistance profiles and biofilm formation ability. Furthermore, the genetic background of 40 selected isolates regarding the presence of virulence and antimicrobial resistance genes and mobile genetic elements was determined. All investigated isolates were multidrug resistant, most prominently to ß-lactams, fluoroquinolones, sulfonamides and macrolides. A total of 48 different resistance profiles were detected. Of all isolates, 50.8% formed a strong biofilm, where strains isolated from geese appeared to be better at biofilm formation than strains isolated from laying and breeding hens. Single-nucleotide polymorphism genotyping revealed that G. anatis bv. haemolytica strains are restricted in host and geographical distribution, and the geese isolates showed greater phylogenetic similarity. Whole genome sequencing enabled identification of 25 different antimicrobial resistance determinants. The most common resistance genes were tetB, blaROB-1, and blaTEM-1 which may be located on mobile genetic elements. All isolates possessed the toxin gene gtxA, and the fimbrial gene flfA was identified in 95% of strains. Our results indicated that all G. anatis bv. haemolytica isolates showed multidrug resistant phenotypes. Strains isolated from geese were characterized by the highest percentage of isolates resistant to selected antimicrobials, probably reflecting host-related adaptations.


Assuntos
Galinhas , Gansos , Animais , Feminino , Polônia/epidemiologia , Filogenia
3.
Gut Microbes ; 15(1): 2229944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37401755

RESUMO

Fecal microbiota transplantation (FMT) is used routinely to treat recurrent Clostridioides difficile infection (rCDI) and investigated as a treatment for numerous conditions associated with gut microbiota alterations. Metagenomic analyses have indicated that recipient colonization by donor bacteria may be associated with favorable clinical outcomes. Bifidobacteria are abundant gut commensals associated with health. We have previously demonstrated that Bifidobacterium strains transferred in FMT can colonize recipients in long term, at least for a year, and recovered such strains by cultivation. This study addressed in vitro adhesion and pilus gene expression of long-term colonizing Bifidobacterium strains from FMT donors as well as in vivo colonization and capability to ameliorate antibiotic-induced microbiota disturbance. RNA-Seq differential gene expression analysis showed that the strongly adherent B. longum strains DY_pv11 and DX_pv23 expressed tight adherence and sortase-dependent pilus genes, respectively. Two B. longum strains, adherent DX_pv23 and poorly adhering DX_pv18, were selected to address in vivo colonization and efficacy to restore antibiotic-disturbed microbiota in C57BL/6 murine model. DX_pv23 colonized mice transiently with a rate comparable to that of the B. animalis BB-12 used as a reference. Although long-term colonization was not observed with any of the three strains, 16S rRNA gene profiling revealed that oral administration of DX_pv23 enhanced the recovery of antibiotic-disturbed microbiota to the original configuration significantly better than the other strains. The findings suggest that selected strains from FMT donors, such as DX_pv23 in this study, may have therapeutic potential by in vitro expression of colonization factors and boosting endogenous gut microbiota.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Microbiota , Animais , Camundongos , Antibacterianos/farmacologia , Bifidobacterium , RNA Ribossômico 16S , Camundongos Endogâmicos C57BL , Fezes/microbiologia , Transplante de Microbiota Fecal , Infecções por Clostridium/microbiologia
4.
Immun Inflamm Dis ; 10(9): e679, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039644

RESUMO

INTRODUCTION: Long-term care facilities (LTCF) residents are at high risk for severe coronavirus disease 2019 (COVID-19), and therefore, COVID-19 vaccinations were prioritized for residents and personnel in Finland at the beginning of 2021. METHODS: We investigated COVID-19 outbreaks in two LTCFs, where residents were once or twice vaccinated. After the outbreaks we measured immunoglobulin G (IgG) antibodies to severe acute respiratory syndrome coronavirus 2 spike glycoprotein, neutralizing antibody (NAb) titers, and cell-mediated immunity markers from residents and healthcare workers (HCWs). RESULTS: In LTFC-1, the outbreak was caused by an Alpha variant (B.1.1.7) and the attack rate (AR) among once vaccinated residents was 23%. In LTCF-2 the outbreak was caused by a Beta variant (B.1.351). Its AR was 47% although all residents had received their second dose 1 month before the outbreak. We observed that vaccination had induced lower IgG concentrations, NAb titers and cell-mediated immune responses in residents compared to HCWs. Only 1/8 residents had NAb to the Beta variant after two vaccine doses. CONCLUSIONS: The vaccinated elderly remain susceptible to breakthrough infections caused by Alpha and Beta variants. The weaker vaccine response in the elderly needs to be addressed in vaccination protocols, while new variants capable of evading vaccine-induced immunity continue to emerge.


Assuntos
COVID-19 , SARS-CoV-2 , Idoso , COVID-19/epidemiologia , COVID-19/prevenção & controle , Humanos , Imunoglobulina G , Incidência , Assistência de Longa Duração , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...