Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 214: 115674, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414102

RESUMO

Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.


Assuntos
Fenóis , Polifenóis , Humanos , Idoso , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Estresse Oxidativo , Envelhecimento
2.
J Steroid Biochem Mol Biol ; 232: 106345, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37286110

RESUMO

Aging is a complex biological process which can be associated with skeletal muscle degradation leading to sarcopenia. The aim of this study consisted i) to determine the oxidative and inflammatory status of sarcopenic patients and ii) to clarify the impact of oxidative stress on myoblasts and myotubes. To this end, various biomarkers of inflammation (C-reactive protein (CRP), TNF-α, IL-6, IL-8, leukotriene B4 (LTB4)) and oxidative stress (malondialdehyde, conjugated dienes, carbonylated proteins and antioxidant enzymes: catalase, superoxide dismutase, glutathione peroxidase) as well as oxidized derivatives of cholesterol formed by cholesterol autoxidation (7-ketocholesterol, 7ß-hydroxycholesterol), were analyzed. Apelin, a myokine which contributes to muscle strength, was also quantified. To this end, a case-control study was conducted to evaluate the RedOx and inflammatory status in 45 elderly subjects (23 non-sarcopenic; 22 sarcopenic) from 65 years old and higher. SARCopenia-Formular (SARC-F) and Timed Up and Go (TUG) tests were used to distinguish between sarcopenic and non-sarcopenic subjects. By using red blood cells, plasma and/or serum, we observed in sarcopenic patients an increased activity of major antioxidant enzymes (superoxide dismutase, glutathione peroxidase, catalase) associated with lipid peroxidation and protein carbonylation (increased level of malondialdehyde, conjugated dienes and carbonylated proteins). Higher levels of 7-ketocholesterol and 7ß-hydroxycholesterol were also observed in the plasma of sarcopenic patients. Significant differences were only observed with 7ß-hydroxycholesterol. In sarcopenic patients comparatively to non-sarcopenic subjects, significant increase of CRP, LTB4 and apelin were observed whereas similar levels of TNF-α, IL-6 and IL-8 were found. The increased plasma level of 7-ketocholesterol and 7ß-hydroxycholesterol in sarcopenic patients led us to study the cytotoxic effect of these oxysterols on undifferentiated (myoblasts) and differentiated (myotubes) murine C2C12 cells. With the fluorescein diacetate and sulforhodamine 101 assays, an induction of cell death was observed both on undifferentiated and differentiated cells: the cytotoxic effects were less pronounced with 7-ketocholesterol. In addition, IL-6 secretion was never detected whatever the culture conditions, TNF-α secretion was significantly increased on undifferentiated and differentiated C2C12 cells treated with 7-ketocholesterol- and 7ß-hydroxycholesterol, and IL-8 secretion was increased on differentiated cells. 7-ketocholesterol- and 7ß-hydroxycholesterol-induced cell death was strongly attenuated by α-tocopherol and Pistacia lentiscus L. seed oil both on myoblasts and/or myotubes. TNF-α and/or IL-8 secretions were reduced by α-tocopherol and Pistacia lentiscus L. seed oil. Our data support the hypothesis that the enhancement of oxidative stress observed in sarcopenic patients could contribute, especially via 7ß-hydroxycholesterol, to skeletal muscle atrophy and inflammation via cytotoxic effects on myoblasts and myotubes. These data bring new elements to understand the pathophysiology of sarcopenia and open new perspectives for the treatment of this frequent age-related disease.


Assuntos
Antioxidantes , Sarcopenia , Humanos , Camundongos , Animais , Idoso , Catalase , Apelina/metabolismo , Apelina/farmacologia , Antioxidantes/farmacologia , alfa-Tocoferol/metabolismo , alfa-Tocoferol/farmacologia , Sarcopenia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-8/metabolismo , Estudos de Casos e Controles , Interleucina-6/metabolismo , Leucotrieno B4/metabolismo , Leucotrieno B4/farmacologia , Hidroxicolesteróis/metabolismo , Cetocolesteróis/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase , Biomarcadores/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos/metabolismo , Óleos de Plantas/metabolismo , Óleos de Plantas/farmacologia
3.
Molecules ; 28(7)2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37049947

RESUMO

Trans-resveratrol (RSV) is a non-flavonoid polyphenol (stilbene) with numerous biological activities, such as anti-tumor activities. However, RSV is rapidly metabolized, which limits its therapeutic use. The availability of RSV analogues with similar activities for use in vivo is therefore a major challenge. For this purpose, several isomeric analogues of RSV, aza-stilbenes (AZA-ST 1a-g), were synthesized, and their toxicities were characterized and compared to those of RSV on murine N2a neuronal cells using especially flow cytometric methods. All AZA-ST 1a-g have an inhibitory concentration 50 (IC50) between 11.3 and 25 µM when determined by the crystal violet assay, while that of RSV is 14.5 µM. This led to the characterization of AZA-ST 1a-g-induced cell death, compared to RSV, using three concentrations encompassing the IC50s (6.25, 12.5 and 25 µM). For AZA-ST 1a-g and RSV, an increase in plasma membrane permeability to propidium iodide was observed, and the proportion of cells with depolarized mitochondria measured with DiOC6(3) was increased. An overproduction of reactive oxygen species (ROS) was also observed on whole cells and at the mitochondrial level using dihydroethidium and MitoSox Red, respectively. However, only RSV induced a mode of cell death by apoptosis associated with a marked increase in the proportion of cells with condensed and/or fragmented nuclei (12.5 µM: 22 ± 9%; 25 µM: 80 ± 10%) identified after staining with Hoechst 33342 and which are characteristic of apoptotic cells. With AZA-ST, a slight but significant increase in the percentage of apoptotic cells was only detected with AZA-ST 1b (25 µM: 17 ± 1%) and AZA-ST 1d (25 µM: 26 ± 4%). Furthermore, only RSV induced significant cell cycle modifications associated with an increase in the percentage of cells in the S phase. Thus, AZA-ST 1a-g-induced cell death is characterized by an alteration of the plasma membrane, an induction of mitochondrial depolarization (loss of ΔΨm), and an overproduction of ROS, which may or may not result in a weak induction of apoptosis without modification of the distribution of the cells in the different phases of the cell cycle.


Assuntos
Apoptose , Estilbenos , Camundongos , Animais , Resveratrol/farmacologia , Resveratrol/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fase S , Morte Celular , Ciclo Celular , Mitocôndrias/metabolismo , Estilbenos/farmacologia , Estilbenos/metabolismo
4.
Steroids ; 187: 109093, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029811

RESUMO

7-ketocholesterol and 7ß-hydroxycholesterol are two oxysterols mainly formed by the autoxidation of cholesterol. These two molecules are interconvertible via specific enzymes. These two oxysterols are often observed at increased amounts in biological fluids as well as tissues and organs affected during age-related diseases and in diseases of civilization such as cardiovascular, neurodegenerative, and ocular diseases as well as type 2 diabetes and metabolic syndrome. Noteworthy, 7-ketocholesterol and 7ß-hydroxycholesterol induce oxidative stress and inflammation, which are frequently observed in patients with age-related and civilization diseases. For this reason, the involvement of these two oxysterols in the pathophysiology of these diseases is widely suspected. In addition, the toxicity of these oxysterols can lead to death by oxiapoptophagy characterized by oxidative stress, apoptosis induction and autophagy criteria. To prevent, or even treat, certain age-related or civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol, the identification of molecules or mixtures of molecules attenuating or inhibiting the toxic effects of these oxysterols allows to consider new treatments. In this context, many nutrients present in significant amounts in the Mediterranean diet, especially tocopherols, fatty acids, and polyphenols, have shown cytoprotective activities as well as several Mediterranean oils (argan and olive oils, milk thistle seed oil, and pistacia lentiscus seed oil). Consequently, a nutraceutical approach, rich in nutrients present in the Mediterranean diet, could thus make it possible to counteract certain age-related and civilization diseases associated with increased levels of 7-ketocholesterol and 7ß-hydroxycholesterol.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Mediterrânea , Envelhecimento , Civilização , Ácidos Graxos , Humanos , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Nutrientes , Óleos , Azeite de Oliva , Polifenóis , Tocoferóis
5.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897887

RESUMO

Trans-resveratrol is a natural polyphenol showing numerous biological properties, especially anti-tumoral and antioxidant activity. Among numerous resveratrol derivatives, aza-stilbenes, which bear an imine bound, show interesting biological activities. In the present study, we synthesized a series of imine analogs of trans-resveratrol (seven aza-stilbenes) following an easy and low-cost procedure of green chemistry. The toxicity of synthesized aza-stilbenes, which is currently unknown, was evaluated on murine neuronal N2a cells, comparatively to trans-resveratrol, by considering: cell density evaluated by staining with sulforhodamine 101; esterase activity, which is a criteria of cell viability, by staining with fluorescein diacetate; and transmembrane mitochondrial potential, which is known to decrease during cell death, by staining with DiOC6(3) using flow cytometry. In addition, the antioxidant activity was quantified with the KRL (Kit Radicaux Libres) assay, the DPPH (2,2'-diphenyl-1-picrylhydrazyl radical) assay and the FRAP (ferric reducing antioxidant power) assay. The PAOT (Pouvoir Antioxidant Total) score was also used. The aza-stilbenes provide different cytotoxic and antioxidant activities, which are either higher or lower than those of trans-resveratrol. Based on their cytotoxic and antioxidant characteristics, all synthesized aza-stilbenes are distinguished from trans-resveratrol.


Assuntos
Antineoplásicos , Estilbenos , Animais , Antineoplásicos/química , Antioxidantes/química , Antioxidantes/farmacologia , Iminas/farmacologia , Camundongos , Resveratrol/farmacologia , Estilbenos/química , Estilbenos/farmacologia
6.
Nutrients ; 14(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35683996

RESUMO

Coronavirus illness (COVID-19) is an infectious pathology generated by intense severe respiratory syndrome coronavirus 2 (SARS-CoV-2). This infectious disease has emerged in 2019. The COVID-19-associated pandemic has considerably affected the way of life and the economy in the world. It is consequently crucial to find solutions allowing remedying or alleviating the effects of this infectious disease. Natural products have been in perpetual application from immemorial time given that they are attested to be efficient towards several illnesses without major side effects. Various studies have shown that plant extracts or purified molecules have a promising inhibiting impact towards coronavirus. In addition, it is substantial to understand the characteristics, susceptibility and impact of diet on patients infected with COVID-19. In this review, we recapitulate the influence of extracts or pure molecules from medicinal plants on COVID-19. We approach the possibilities of plant treatment/co-treatment and feeding applied to COVID-19. We also show coronavirus susceptibility and complications associated with nutrient deficiencies and then discuss the major food groups efficient on COVID-19 pathogenesis. Then, we covered emerging technologies using plant-based SARS-CoV-2 vaccine. We conclude by giving nutrient and plants curative therapy recommendations which are of potential interest in the COVID-19 infection and could pave the way for pharmacological treatments or co-treatments of COVID-19.


Assuntos
COVID-19 , Antivirais/uso terapêutico , Vacinas contra COVID-19 , Dieta , Humanos , Incidência , Nutrientes , Estresse Oxidativo , SARS-CoV-2
7.
Steroids ; 183: 109032, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35381271

RESUMO

Peroxisomes play an important role in regulating cell metabolism and RedOx homeostasis. Peroxisomal dysfunctions favor oxidative stress and cell death. The ability of 7ß-hydroxycholesterol (7ß-OHC; 50 µM, 24 h), known to be increased in patients with age-related diseases such as sarcopenia, to trigger oxidative stress, mitochondrial and peroxisomal dysfunction was studied in murine C2C12 myoblasts. The capacity of milk thistle seed oil (MTSO, 100 µg/mL) as well as α-tocopherol (400 µM; reference cytoprotective agent) to counteract the toxic effects of 7ß-OHC, mainly at the peroxisomal level were evaluated. The impacts of 7ß-OHC, in the presence or absence of MTSO or α-tocopherol, were studied with complementary methods: measurement of cell density and viability, quantification of reactive oxygen species (ROS) production and transmembrane mitochondrial potential (ΔΨm), evaluation of peroxisomal mass as well as topographic, morphologic and functional peroxisomal changes. Our results indicate that 7ß-OHC induces a loss of cell viability and a decrease of cell adhesion associated with ROS overproduction, alterations of mitochondrial ultrastructure, a drop of ΔΨm, and several peroxisomal modifications. In the presence of 7ß-OHC, comparatively to untreated cells, important quantitative and qualitative peroxisomal modifications were also identified: a) a reduced number of peroxisomes with abnormal sizes and shapes, mainly localized in cytoplasmic vacuoles, were observed; b) the peroxisomal mass was decreased as indicated by lower protein and mRNA levels of the peroxisomal ABCD3 transporter; c) lower mRNA level of Pex5 involved in peroxisomal biogenesis as well as higher mRNA levels of Pex13 and Pex14, involved in peroxisomal biogenesis and/or pexophagy, was found; d) lower levels of ACOX1 and MFP2 enzymes, implicated in peroxisomal ß-oxidation, were detected; e) higher levels of very-long-chain fatty acids, which are substrates of peroxisomal ß-oxidation, were found. These different cytotoxic effects were strongly attenuated by MTSO, in the same range of order as with α-tocopherol. These findings underline the interest of MTSO and α-tocopherol in the prevention of peroxisomal damages (pexotherapy).


Assuntos
Silybum marianum , alfa-Tocoferol , Animais , Antioxidantes/farmacologia , Flavonoides , Humanos , Hidroxicolesteróis , Camundongos , Silybum marianum/metabolismo , Mioblastos/metabolismo , Óleos de Plantas , RNA Mensageiro , Espécies Reativas de Oxigênio/metabolismo , alfa-Tocoferol/farmacologia
8.
Nutrients ; 14(3)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35276955

RESUMO

Saffron (Crocus sativus L.) is a medicinal plant, originally cultivated in the East and Middle East, and later in some Mediterranean countries. Saffron is obtained from the stigmas of the plant. Currently, the use of saffron is undergoing a revival. The medicinal virtues of saffron, its culinary use and its high added value have led to the clarification of its phytochemical profile and its biological and therapeutic characteristics. Saffron is rich in carotenoids and terpenes. The major products of saffron are crocins and crocetin (carotenoids) deriving from zeaxanthin, pirocrocin and safranal, which give it its taste and aroma, respectively. Saffron and its major compounds have powerful antioxidant and anti-inflammatory properties in vitro and in vivo. Anti-tumor properties have also been described. The goal of this review is to present the beneficial effects of saffron and its main constituent molecules on neuropsychiatric diseases (depression, anxiety and schizophrenia) as well as on the most frequent age-related diseases (cardiovascular, ocular and neurodegenerative diseases, as well as sarcopenia). Overall, the phytochemical profile of saffron confers many beneficial virtues on human health and, in particular, on the prevention of age-related diseases, which is a major asset reinforcing the interest for this medicinal plant.


Assuntos
Crocus , Plantas Medicinais , Envelhecimento , Crocus/química , Humanos , Nutrientes , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
9.
Cells ; 11(2)2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35053373

RESUMO

Mitochondria are multifunctional organelles that participate in a wide range of metabolic processes, including energy production and biomolecule synthesis. The morphology and distribution of intracellular mitochondria change dynamically, reflecting a cell's metabolic activity. Oxidative stress is defined as a mismatch between the body's ability to neutralise and eliminate reactive oxygen and nitrogen species (ROS and RNS). A determination of mitochondria failure in increasing oxidative stress, as well as its implications in neurodegenerative illnesses and apoptosis, is a significant developmental process of focus in this review. The neuroprotective effects of bioactive compounds linked to neuronal regulation, as well as related neuronal development abnormalities, will be investigated. In conclusion, the study of secondary components and the use of mitochondrial features in the analysis of various neurodevelopmental diseases has enabled the development of a new class of mitochondrial-targeted pharmaceuticals capable of alleviating neurodegenerative disease states and enabling longevity and healthy ageing for the vast majority of people.


Assuntos
Envelhecimento/patologia , Encéfalo/patologia , Mitocôndrias/patologia , Doenças Neurodegenerativas/patologia , Fármacos Neuroprotetores/farmacologia , Animais , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos
10.
J Steroid Biochem Mol Biol ; 212: 105939, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34118414

RESUMO

7-Ketocholesterol, which is one of the earliest cholesterol oxidization products identified, is essentially formed by the auto-oxidation of cholesterol. In the body, 7-ketocholesterol is both provided by food and produced endogenously. This pro-oxidant and pro-inflammatory molecule, which can activate apoptosis and autophagy at high concentrations, is an abundant component of oxidized Low Density Lipoproteins. 7-Ketocholesterol appears to significantly contribute to the development of age-related diseases (cardiovascular diseases, age-related macular degeneration, and Alzheimer's disease), chronic inflammatory bowel diseases and to certain cancers. Recent studies have also shown that 7-ketocholesterol has anti-viral activities, including on SARS-CoV-2, which are, however, lower than those of oxysterols resulting from the oxidation of cholesterol on the side chain. Furthermore, 7-ketocholesterol is increased in the serum of moderately and severely affected COVID-19 patients. In the case of COVID-19, it can be assumed that the antiviral activity of 7-ketocholesterol could be counterbalanced by its toxic effects, including pro-oxidant, pro-inflammatory and pro-coagulant activities that might promote the induction of cell death in alveolar cells. It is therefore suggested that this oxysterol might be involved in the pathophysiology of COVID-19 by contributing to the acute respiratory distress syndrome and promoting a deleterious, even fatal outcome. Thus, 7-ketocholesterol could possibly constitute a lipid biomarker of COVID-19 outcome and counteracting its toxic effects with adjuvant therapies might have beneficial effects in COVID-19 patients.


Assuntos
Antivirais/farmacologia , COVID-19/etiologia , Cetocolesteróis/sangue , Animais , Biomarcadores/sangue , COVID-19/sangue , Humanos , Cetocolesteróis/metabolismo , Tratamento Farmacológico da COVID-19
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...