Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4589, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816395

RESUMO

Modulation of scattering in random lasers (RLs) by magnetic fields has attracted much attention due to its rich physical insights. We fabricate magnetic gain polymer optical fiber to generate RLs. From macroscopic experimental phenomena, with the increase of the magnetic field strength, the magnetic transverse photocurrent exists in disordered multiple scattering of RLs and the emission intensity of RLs decreases, which is the experimental observation of photonic Hall effect (PHE) and photonic magnetoresistance (PMR) in RLs. At the microscopic level, based on the field dependence theory of magnetic disorder in scattered nanoparticles and the replica symmetry breaking theory, the magnetic-induced transverse diffusion of photons reduces the scattering disorder, and then decreases the intensity fluctuation disorder of RLs. Our work establishes a connection between the above two effects and RLs, visualizes the influence of magnetic field on RL scattering at the microscopic level, which is crucial for the design of RLs.

2.
Reprod Biol Endocrinol ; 22(1): 26, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383391

RESUMO

BACKGROUND: To evaluate the impact of embryo quality and quantity, specifically a poor quality embryo (PQE) in combination with a good quality embryo (GQE), by double embryo transfer (DET) on the live birth rate (LBR) and neonatal outcomes in patients undergoing frozen-thawed embryo transfer (FET) cycles. METHODS: A study on a cohort of women who underwent a total of 1462 frozen-thawed cleavage or blastocyst embryo transfer cycles with autologous oocytes was conducted between January 2018 and December 2021. To compare the outcomes between single embryo transfer (SET) with a GQE and DET with a GQE and a PQE, propensity score matching (PSM) was applied to control for potential confounders, and a generalized estimating equation (GEE) model was used to determine the association between the effect of an additional PQE and the outcomes. Subgroup analysis was also performed for patients stratified by female age. RESULTS: After PS matching, DET-GQE + PQE did not significantly alter the LBR (adjusted odds ratio [OR] 1.421, 95% CI 0.907-2.228) compared with SET-GQE in cleavage-stage embryo transfer but did increase the multiple birth rate (MBR, [OR] 3.917, 95% CI 1.189-12.911). However, in patients who underwent blastocyst-stage embryo transfer, adding a second PQE increased the live birth rate by 7.8% ([OR] 1.477, 95% CI 1.046-2.086) and the multiple birth rate by 19.6% ([OR] 28.355, 95% CI 3.926-204.790), and resulted in adverse neonatal outcomes. For patients who underwent cleavage-stage embryo transfer, transferring a PQE with a GQE led to a significant increase in the MBR ([OR] 4.724, 95% CI 1.121-19.913) in women under 35 years old but not in the LBR ([OR] 1.227, 95% CI 0.719-2.092). The increases in LBR and MBR for DET-GQE + PQE compared with SET-GQE in women older than 35 years were nonsignificant toward. For patients who underwent blastocyst-stage embryo transfer, DET-GQE + PQE had a greater LBR ([OR] 1.803, 95% CI 1.165-2.789), MBR ([OR] 24.185, 95% CI 3.285-178.062) and preterm birth rate (PBR, [OR] 4.092, 95% CI 1.153-14.518) than did SET-GQE in women under 35 years old, while no significant impact on the LBR ([OR] 1.053, 95% CI 0.589-1.884) or MBR (0% vs. 8.3%) was observed in women older than 35 years. CONCLUSIONS: The addition of a PQE has no significant benefit on the LBR but significantly increases the MBR in patients who underwent frozen-thawed cleavage-stage embryo transfer. However, for patients who underwent blastocyst-stage embryo transfer, DET-GQE + PQE resulted in an increase in both the LBR and MBR, which may lead to adverse neonatal outcomes. Thus, the benefits and risks of double blastocyst-stage embryo transfer should be balanced. In patients younger than 35 years, SET-GQE achieved satisfactory LBR either in cleavage-stage embryo transfer or blastocyst-stage embryo transfer, while DET-GQE + PQE resulted in a dramatically increased MBR. Considering the low LBR in women older than 35 years who underwent single cleavage-stage embryo transfer, selective single blastocyst-stage embryo transfer appears to be a more promising approach for reducing the risk of multiple live births and adverse neonatal outcomes.


Assuntos
Fertilização in vitro , Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Adulto , Fertilização in vitro/métodos , Nascimento Prematuro/etiologia , Transferência Embrionária/métodos , Gravidez Múltipla , Transferência de Embrião Único/efeitos adversos , Nascido Vivo , Taxa de Gravidez , Estudos Retrospectivos
3.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37862523

RESUMO

We report the design and realization of the back focal plane (BFP) imaging for the light emission from a tunnel junction in a low-temperature ultrahigh-vacuum (UHV) scanning tunneling microscope (STM). To achieve the BFP imaging in a UHV environment, a compact "all-in-one" sample holder is designed and fabricated, which allows us to integrate the sample substrate with the photon collection units that include a hemisphere solid immersion lens and an aspherical collecting lens. Such a specially designed holder enables the characterization of light emission both within and beyond the critical angle and also facilitates the optical alignment inside a UHV chamber. To test the performance of the BFP imaging system, we first measure the photoluminescence from dye-doped polystyrene beads on a thin Ag film. A double-ring pattern is observed in the BFP image, arising from two kinds of emission channels: strong surface plasmon coupled emissions around the surface plasmon resonance angle and weak transmitted fluorescence maximized at the critical angle, respectively. Such an observation also helps to determine the emission angle for each image pixel in the BFP image and, more importantly, proves the feasibility of our BFP imaging system. Furthermore, as a proof-of-principle experiment, electrically driven plasmon emissions are used to demonstrate the capability of the constructed BFP imaging system for STM induced electroluminescence measurements. A single-ring pattern is obtained in the BFP image, which reveals the generation and detection of the leakage radiation from the surface plasmon propagating on the Ag surface. Further analyses of the BFP image provide valuable information on the emission angle of the leakage radiation, the orientation of the radiating dipole, and the plasmon wavevector. The UHV-BFP imaging technique demonstrated here opens new routes for future studies on the angular distributed emission and dipole orientation of individual quantum emitters in UHV.

4.
Opt Express ; 31(16): 25372-25384, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710426

RESUMO

In this article, highly sensitive voltage, thermal and magnetic field fiber sensors were obtained in magnetic nanoparticles-doped E7 liquid crystals filled into photonic crystal fibers (PLCF). The voltage and temperature sensitivity reached at 12.598 nm/V and -3.874 nm/°C, respectively. The minimum voltage response time is 48.2 ms. The phase transition temperature Tc of liquid crystal with magnetic dopant was reduced from 60 °C to 46 °C. The magnetic field sensor based on magnetic nanoparticles-doped PLCF were obtained with sensitivity of 118.2 pm/mT from 400 to 460 mT.

5.
Nanoscale ; 15(25): 10685-10692, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37317632

RESUMO

Metal-organic frameworks (MOFs), which have well-defined nanoporous skeletons and whose natural structure can work as optical resonant cavities, are emerging as ideal platforms for constructing micro/nanolasers. However, lasing generated from the light oscillating inside a defined MOFs' cavity usually suffers the drawback of the lasing performance being difficult to maintain once the cavity is destroyed. In this work, we report a MOF-based self-healing hydrogel fiber random laser (MOF-SHFRL) that can withstand extreme damage. The optical feedback of MOF-SHFRLs does not depend on the light reflection inside the MOF cavity but comes from the multiple scattering effects from the MOF nanoparticles (NPs). The hydrogel fiber's one-dimensional waveguide structure also permits confined directional lasing transmission. Based on such an ingenious design, a robust random lasing is achieved without worrying about the destruction of the MOF NPs. More interestingly, the MOF-SHFRL demonstrates excellent self-healing ability without any external stimulation: it can fully recover its initial morphology and lasing performance even when totally broken (e.g., cut into two parts). The lasing threshold also remains stable, and the optical transmission capability can recover by more than 90% after multiple breaks and self-healing processes. These results indicate that the MOF-SHFRL is a highly stable optical device that can be expected to play a significant role in environmental monitoring, intelligent sensing, and other aspects under extreme conditions.


Assuntos
Estruturas Metalorgânicas , Dispositivos Ópticos , Hidrogéis , Lasers , Monitoramento Ambiental
6.
Phys Chem Chem Phys ; 25(11): 7711-7718, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36876861

RESUMO

Optical microscopy with a diffraction limit cannot distinguish nanowires with sectional dimensions close to or smaller than the optical resolution. Here, we propose a scheme to retrieve the subwavelength cross-section of nanowires based on the asymmetric excitation of Bloch surface waves (BSWs). Leakage radiation microscopy is used to observe the propagation of BSWs at the surface and to collect far-field scattering patterns in the substrate. A model of linear dipoles induced by tilted incident light is built to explain the directional imbalance of BSWs. It shows the potential capability in precisely resolving the subwavelength cross-section of nanowires from far-field scattering without the need for complex algorithms. Through comparing the nanowire widths measured by this method and those measured by scanning electron microscopy (SEM), the transverse resolutions of the widths of two series of nanowires with heights 55 nm and 80 nm are about 4.38 nm and 6.83 nm. All results in this work demonstrate that the new non-resonant far-field optical technology has potential application in metrology measurements with high precision by taking care of the inverse process of light-matter interaction.

7.
Front Endocrinol (Lausanne) ; 13: 971993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36387847

RESUMO

Context: High progesterone levels in the follicular stage interfere with the implantation window, causing infertility in women with 17-hydroxylase/17,20-lyase deficiency (17OHD). Dexamethasone can restore cortisol deficiency and suppress inappropriate mineralocorticoid secretion to control hypertension in 17OHD patients, but poses risks to the foetus if administered during pregnancy. Objective: We prospectively explored a rational glucocorticoid use protocol for assistive reproduction in a woman with non-classic 17OHD that reduced glucocorticoid side effects. Method: In this study, the treatment protocol for this 17OHD patient included the following steps. First, the appropriate type and dose of glucocorticoid for endogenous progesterone suppression was determined. Then, glucocorticoid was discontinued to increase endogenous progesterone levels for ovarian stimulation. Next, dexamethasone plus GnRHa were used to reduce progesterone levels in frozen embryos for transfer. Once pregnancy was confirmed, dexamethasone was discontinued until delivery. Results: Dexamethasone, but not hydrocortisone, reduced progesterone levels in the 17OHD woman. After endogenous progesterone-primed ovarian stimulation, 11 oocytes were retrieved. Seven oocytes were 2PN fertilised and four day-3 and two day-5 embryos were cryopreserved. After administering dexamethasone plus gonadotropin-releasing hormone agonist (GnRHa) to reduce progesterone levels to normal, hormone replacement therapy was administered until the endometrial width reached 9 mm. Exogenous progesterone (60 mg/day) was used for endometrial preparation. Two thawed embryos were transferred on day 4. Dexamethasone was continued until pregnancy confirmation on the 13th day post-transfer. Two healthy boys, weighing 2100 and 2000 g, were delivered at 36 weeks' gestation. Conclusion: Rational use of dexamethasone synchronised embryonic development with the endometrial implantation window, while not using in post-implantation avoided its side effects and promoted healthy live births in women non-classic 17OHD undergoing in vitro fertilisation.


Assuntos
Hiperplasia Suprarrenal Congênita , Dexametasona , Esteroide 17-alfa-Hidroxilase , Feminino , Humanos , Gravidez , Dexametasona/uso terapêutico , Fertilização in vitro , Glucocorticoides/uso terapêutico , Progesterona , Hiperplasia Suprarrenal Congênita/tratamento farmacológico
8.
Opt Lett ; 47(17): 4303-4306, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048639

RESUMO

Conventional total internal reflection fluorescence (TIRF) microscopy requires either an oil-immersed objective with high numerical aperture or a bulky prism with high refractive index to generate the evanescent waves that work as the illumination source for fluorophores. Precise alignment of the optical path is necessary for optimizing the imaging performance of TIRF microscopy, which increases the operation complexity. In this Letter, a planar photonic chip composed of a dielectric multilayer and a scattering layer is proposed to replace the TIRF objective or the prism. The uniform evanescent waves can be excited under uncollimated incidence through this chip, which simplifies the alignment of the optical configurations and provides shadowless illumination. Due to the separation of the illumination and detection light paths, TIRF microscopy can have a large field-of-view (FOV).


Assuntos
Iluminação , Refratometria , Microscopia de Fluorescência/métodos , Óptica e Fotônica , Fótons
9.
Nat Commun ; 12(1): 6835, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824261

RESUMO

A limitation of standard brightfield microscopy is its low contrast images, especially for thin specimens of weak absorption, and biological species with refractive indices very close in value to that of their surroundings. We demonstrate, using a planar photonic chip with tailored angular transmission as the sample substrate, a standard brightfield microscopy can provide both darkfield and total internal reflection (TIR) microscopy images with one experimental configuration. The image contrast is enhanced without altering the specimens and the microscope configurations. This planar chip consists of several multilayer sections with designed photonic band gaps and a central region with dielectric nanoparticles, which does not require top-down nanofabrication and can be fabricated in a larger scale. The photonic chip eliminates the need for a bulky condenser or special objective to realize darkfield or TIR illumination. Thus, it can work as a miniaturized high-contrast-imaging device for the developments of versatile and compact microscopes.


Assuntos
Aumento da Imagem/instrumentação , Aumento da Imagem/métodos , Desenho de Equipamento , Microscopia , Nanopartículas , Fótons , Ressonância de Plasmônio de Superfície
10.
Anal Chem ; 92(16): 11062-11071, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32639743

RESUMO

Aerosol particle hygroscopicity is an important factor in visibility reduction, cloud formation, radiation forcing, and the global climate. The high number concentration of nanoparticles (defined as particles with diameters below 100 nm) means that their hygroscopic growth abilities and potential contributions to the climate and environment are significant. Therefore, a rapid and accurate in situ analysis method for single nanoparticle hygroscopic growth in an atmospheric environment is important to characterize the effects of the particle's physical and chemical properties in this process. In this work, surface plasmon resonance microscopy with azimuthal rotation illumination (SPRM-ARI) is used to observe the hygroscopic growth and water content of single nanoparticles in situ. The hygroscopic growth results of a single-component nanoparticle are well matched with the extended aerosol inorganic model (E-AIM) results, and the proposed method remains reliable even when the relative humidity (RH) exceeds 90%. For a bicomponent nanoparticle (with NaCl as the primary content), the presence of a component without deliquescence phase transitions under increasing humidity conditions causes the measured data to differ from both the Zdanovskii-Stokes-Robinson (ZSR) model and E-AIM predictions in the low RH range. However, because of their complete liquefaction, the growth factor (GF) variation of the bicomponent nanoparticle is close to the model predictions in the high RH range. Finally, based on the positive correlation between particle volume and the gray intensity of SPRM-ARI, GF values can be obtained from the cube root of the gray intensity and the actual water content of single nanoparticles can then be derived.

11.
ACS Nano ; 14(7): 9136-9144, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32649174

RESUMO

The growth in aerosol particles caused by water uptake during increasing ambient relative humidity alters the physical and chemical properties of aerosols, which then affects public health, atmospheric chemistry, and the Earth's climate. The temporal resolution and sensitivity of current techniques are not sufficient to measure the growth dynamics of single aerosol nanoparticles. Additionally, the specific time required for phase transition from solid to aqueous has not been measured. Here, we describe a label-free photonic microscope that uses the Bloch surface waves as the illumination source for imaging and sensing to provide real-time measurements of the hygroscopic growth dynamics of a single aerosol (diameter <100 nm) containing the main components of air pollution. This specific time can be measured for both pure and mixed aerosols, showing that organics will delay the phase transition. This photonic microscope can be extended to investigate physicochemical reactions of various aerosols, and then knowing this specific time will be favorable for understanding the reaction kinetics among single aerosols and the surrounding medium.

12.
Nanoscale ; 12(3): 1688-1696, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31894803

RESUMO

Metallic particles are promising for applications in various areas, including optical sensing, imaging and electric field enhancement-induced optical and thermal effects. The ability to trap or transport these particles stably will be important in these applications. However, while traditional optical tweezers can trap metallic Rayleigh particles easily, it is difficult to trap metallic mesoscopic/Mie particles because of the strong scattering forces that come from the far-field trapping laser beam. Here we demonstrate that metallic particles can be trapped stably using focused Bloch surface waves that propagate in the near-field region of a dielectric multilayer structure with a photonic band gap. Focused Bloch surface waves can be excited efficiently using an annular beam with azimuthal polarization and a high-numerical-aperture objective. Numerical simulations were performed to calculate the optical forces loaded on a gold particle by focused Bloch surface waves and the results were consistent with those of the experimental observations.

13.
Ann Phys ; 532(4)2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34113044

RESUMO

Near-field optical trapping can be realized with focused evanescent waves that are excited at the water-glass interface due to the total internal reflection, or with focused plasmonic waves excited on the water-gold interface. Herein, the performance of these two kinds of near-field optical trapping techniques is compared using the same optical microscope configuration. Experimental results show that only a single-micron polystyrene bead can be trapped by the focused evanescent waves, whereas many beads are simultaneously attracted to the center of the excited region by focused plasmonic waves. This difference in trapping behavior is analyzed from the electric field intensity distributions of these two kinds of focused surface waves and the difference in trapping behavior is attributed to photothermal effects due to the light absorption by the gold film.

14.
Phys Rev Appl ; 13(1)2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34113692

RESUMO

Dielectric multilayer photonic-band-gap structures, called one-dimensional photonic crystals (1DPCs), have drawn considerable attention in the fields of physics, chemistry, and biophotonics. Here, experimental results verify the feasibility of a 1DPC working as a substrate for switchable manipulations of colloidal microparticles. The optically induced thermal convective force on a 1DPC can assemble colloidal particles that are dispersed in a water solution, while the photonic scattering force on the same 1DPC caused by propagating evanescent waves can guide these particles. Additionally, in the 1DPC, one internal mode can be excited that has seldom been noticed previously. This mode shows an ability to assemble particles over large areas even when the incident power is low. The assembly and guidance of colloidal particles on the 1DPC are switchable just through tuning the polarization and angle of the incident laser beam. Numerical simulations are carried out, which are consistent with these experimental observations.

15.
Nat Commun ; 10(1): 2093, 2019 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-31048682

RESUMO

The original version of the Article contained an error in Figure 2 in which the TEM images in Fig. 2b and d were incorrect. Additionally, the seventh sentence of the 'Mechanism for the dissymmetry enhancement of SCL field' section of the Methods originally contained a mistake in the first equation. This has been corrected in both the PDF and HTML versions of the Article.

16.
Sci Adv ; 5(3): eaav5335, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30944860

RESUMO

Surface plasmon resonance microscopy (SPRM) with single-direction illumination is a powerful platform for biomedical imaging because of its wide-field, label-free, and high-surface-sensitivity imaging capabilities. However, two disadvantages prevent wider use of SPRM. The first is its poor spatial resolution that can be as large as several micrometers. The second is that SPRM requires use of metal films as sample substrates; this introduces working wavelength limitations. In addition, cell culture growth on metal films is not as universally available as growth on dielectric substrates. Here we show that use of azimuthal rotation illumination allows SPRM spatial resolution to be enhanced by up to an order of magnitude. The metal film can also be replaced by a dielectric multilayer and then a different label-free surface-sensitive photonic microscopy is developed, which has more choices in terms of the working wavelength, polarization, and imaging section, and will bring opportunities for applications in biology.

17.
Nat Commun ; 9(1): 5117, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30504770

RESUMO

Superchiral light, generated by the interference of two counter-propagating circularly polarized light (CPL) with same frequency, opposite handedness and different intensity, exhibits enhanced dissymmetry in its interaction with chiral molecules, and has the potential for ultrasensitive detection and characterization of chiral molecules. It is anticipated that the enhanced optical dissymmetry in superchiral light (SCL) field may be utilized to promote asymmetric photochemical reactions efficiency. Herein we reported SCL impart greater chiral bias to trigger asymmetric photo-polymerization reaction from initially achiral diacetylene (DA) monomer, and the enhanced optical dissymmetry for whole polydiacetylene (PDA) films could be achieved. An explanation based on the chiral transfer and amplification of chiral bias from SCL during the polymerization process has been proposed. Moreover, thus formed chiral PDA films polymerized by SCL exhibited enhanced enantioselective recognition ability, and can serve as a direct visual probe for the discrimination of some specific enantiomers.

18.
Phys Rev Appl ; 10(2)2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31576366

RESUMO

Both experiments and simulations show that the polarization state and propagation path of the Bloch surface waves sustained on a dielectric multilayer, can be manipulated with the grooves inscribed on this multilayer. These grooves can be easily producible, accessible and controllable. Various nano-devices for the Bloch surface waves, such as the launcher, beam splitter, reflector, polarization rotator, and even the photonic single-pole double-throw switch, were all experimentally realized with the properly designed grooves, which are consistent with the numerical simulations. The proposed devices will be basic elements for the two-dimensional photonic system, and will find numerous applications, including integrated photonics, molecular sensing, imaging and micro-manipulation.

19.
Appl Sci (Basel) ; 8(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31588365

RESUMO

Experiments and numerical simulations demonstrate that when a silver nanowire is placed on a dielectric multilayer, but not the commonly used bare glass slide, the effective refractive index of the propagating surface plasmons along the silver nanowire can be controlled. Furthermore, by increasing the thickness of the top dielectric layer, longer wavelength light can also propagate along a very thin silver nanowire. In the experiment, the diameter of the silver nanowire can be as thin as 70 nm, with the incident wavelength as long as 640 nm. The principle of this control is analysed from the existence of a photonic band gap and the Bloch surface wave with this dielectric multilayer substrate.

20.
ACS Nano ; 11(10): 10446-10451, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28921957

RESUMO

The use of a single silver nanowire as a flexible coupler to transform a free space beam into a Bloch surface wave propagating on a dielectric multilayer is proposed. Based on Huygens' Principle, when a Gaussian beam is focused onto a straight silver nanowire, a Bloch surface wave is generated and propagates perpendicular to the nanowire. By curving the silver nanowire, the surface wave can be focused. Furthermore, the spatial phase of the incident laser beam can be actively controlled with the aid of a spatial light modulator, resulting in the reconfigurable or dynamically controlled Bloch surface waves. The low cost of the chemically synthesized silver nanowires and the high flexibility with regard to tuning the spatial phase of the incident light make this approach very promising for various applications including optical micromanipulation, fluorescence imaging, and sensing.


Assuntos
Nanofios/química , Prata/química , Imagem Óptica , Tamanho da Partícula , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...