Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Curr Biol ; 34(11): 2418-2433.e4, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38749425

RESUMO

A primary cilium is a membrane-bound extension from the cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. Primary cilia in the brain are less accessible than cilia on cultured cells or epithelial tissues because in the brain they protrude into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) but were absent from oligodendrocytes and microglia. Ultrastructural comparisons revealed that the base of the cilium and the microtubule organization differed between neurons and glia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting that cilia are poised to encounter locally released signaling molecules. Our analysis indicated that synapse proximity is likely due to random encounters in the neuropil, with no evidence that cilia modulate synapse activity as would be expected in tetrapartite synapses. The observed cell class differences in proximity to synapses were largely due to differences in external cilia length. Many key structural features that differed between neuronal and glial cilia influenced both cilium placement and shape and, thus, exposure to processes and synapses outside the cilium. Together, the ultrastructure both within and around neuronal and glial cilia suggest differences in cilia formation and function across cell types in the brain.


Assuntos
Cílios , Animais , Cílios/ultraestrutura , Camundongos , Microscopia Eletrônica de Transmissão , Camundongos Endogâmicos C57BL , Neurônios/ultraestrutura , Neurônios/fisiologia , Córtex Visual/ultraestrutura , Córtex Visual/fisiologia , Neuroglia/ultraestrutura , Neuroglia/fisiologia , Feminino , Sinapses/ultraestrutura , Sinapses/fisiologia , Masculino
2.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37961618

RESUMO

A primary cilium is a thin membrane-bound extension off a cell surface that contains receptors for perceiving and transmitting signals that modulate cell state and activity. While many cell types have a primary cilium, little is known about primary cilia in the brain, where they are less accessible than cilia on cultured cells or epithelial tissues and protrude from cell bodies into a deep, dense network of glial and neuronal processes. Here, we investigated cilia frequency, internal structure, shape, and position in large, high-resolution transmission electron microscopy volumes of mouse primary visual cortex. Cilia extended from the cell bodies of nearly all excitatory and inhibitory neurons, astrocytes, and oligodendrocyte precursor cells (OPCs), but were absent from oligodendrocytes and microglia. Structural comparisons revealed that the membrane structure at the base of the cilium and the microtubule organization differed between neurons and glia. OPC cilia were distinct in that they were the shortest and contained pervasive internal vesicles only occasionally observed in neuron and astrocyte cilia. Investigating cilia-proximal features revealed that many cilia were directly adjacent to synapses, suggesting cilia are well poised to encounter locally released signaling molecules. Cilia proximity to synapses was random, not enriched, in the synapse-rich neuropil. The internal anatomy, including microtubule changes and centriole location, defined key structural features including cilium placement and shape. Together, the anatomical insights both within and around neuron and glia cilia provide new insights into cilia formation and function across cell types in the brain.

4.
Nanotechnology ; 31(3): 035001, 2020 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-31530764

RESUMO

It is well-known that the electrical conductivity of a metallic film reduces dramatically when the film becomes very thin. This effect is mainly attributed to surface scattering of the conducting carriers. In a multilayer structure, interface scattering also reduces the conductance, but chemical reactions at the interfaces can have equal or bigger effects. The extent of chemically induced carrier localization at the metallic interfaces has not been explored or reported. We have grown superlattices consisting of nm-thin, alternating Al and transition-metal layers (Al/Ru, Al/Co and Al/Mo) by magnetron sputtering, and measured the electrical conductance of the superlattices in-situ during the growth. We observed a sharp conductance drop at the start of each transition metal layer and a pause in conduction increase at the start of each Al layer, neither of which is predicted by the surface scattering model. We show that these abnormal conductance changes can be explained by localization of Al free carriers at the interfaces to facilitate the formation of intermetallic bonds. The magnitude of the measured conductance drops suggests that one monolayer of compound is formed at each interface at room temperature. Annealing the superlattices to 300 °C caused a modest decrease in conductance, attributed to further chemical reactions. In contrast, a superlattice involving two fully miscible transition metals, Ru and Co, exhibited no carrier localization, resulting in a conductance more than three times that of superlattices containing Al layers.

5.
Nanotechnology ; 26(7): 075704, 2015 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-25627961

RESUMO

The knowledge on the influence of surface roughness and the electron-phonon (el-ph) interaction on electrical transport properties of nanoscale metal films is important from both fundamental and technological points of view. Here we report a study of the temperature dependent electron transport properties of nanoscale copper films by measuring temperature dependent electrical resistivity with thickness ranging from 4 to 500 nm. We show that the residual resistivity, which is temperature independent, can be described quantitatively using both measured vertical surface root-mean-square roughness and lateral correlation length in the nanoscale, with no adjustable parameter, by a recent quasi-classical model developed by Chatterjee and Meyerovich (2010 Phys. Rev. B 81 245409-10). We also demonstrate that the temperature dependent component of the resistivity can be described using the Bloch-Grüneisen equation with a thickness dependent el-ph coupling constant and a thickness dependent Debye temperature. We show that the increase of the el-ph coupling constant with the decrease of film thickness gives rise to an enhancement of the temperature dependent component of the resistivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...