Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 10388, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871122

RESUMO

Social interaction increases significantly the performance of a wide range of cooperative systems. However, evidence that natural swarms limit the number of interactions suggests potentially detrimental consequences of excessive interaction. Using a canonical model of collective motion, we find that the collective response to a dynamic localized perturbation-emulating a predator attack-is hindered when the number of interacting neighbors exceeds a certain threshold. Specifically, the effectiveness in avoiding the predator is enhanced by large integrated correlations, which are known to peak at a given level of interagent interaction. From the network-theoretic perspective, we uncover the same interplay between number of connections and effectiveness in group-level response for two distinct decision-making models of distributed consensus operating over a range of static networks. The effect of the number of connections on the collective response critically depends on the dynamics of the perturbation. While adding more connections improves the response to slow perturbations, the opposite is true for fast ones. These results have far-reaching implications for the design of artificial swarms or interaction networks.

2.
Lab Chip ; 9(2): 276-85, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19107285

RESUMO

Herein we present an integrated microfluidic device capable of performing two-step gene synthesis to assemble a pool of oligonucleotides into genes with the desired coding sequence. The device comprised of two polymerase chain reactions (PCRs), temperature-controlled hydrogel valves, electromagnetic micromixer, shuttle micromixer, volume meters, and magnetic beads based solid-phase PCR purification, fabricated using a fast prototyping method without lithography process. The fabricated device is combined with a miniaturized thermal cycler to perform gene synthesis. Oligonucleotides were first assembled into genes by polymerase chain assembly (PCA), and the full-length gene was amplified by a second PCR. The synthesized gene was further separated from the PCR reaction mixture by the solid-phase PCR purification. We have successfully used this device to synthesize a green fluorescent protein fragment (GFPuv) (760 bp), and obtained comparable synthesis yield and error rate with experiments conducted in a PCR tube within a commercial thermal cycler. The resulting error rate determined by DNA sequencing was 1 per 250 bp. To our knowledge, this is the first microfluidic device demonstrating integrated two-step gene synthesis.


Assuntos
Genes Sintéticos , Técnicas Analíticas Microfluídicas/instrumentação , DNA/síntese química , Análise Mutacional de DNA , Técnicas Analíticas Microfluídicas/métodos , Técnicas de Amplificação de Ácido Nucleico , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...