Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 423: 136287, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37178600

RESUMO

Pathogenic bacteria have a significant impact on food safety. Herein, an innovative dual-mode ratiometric aptasensor was constructed for ultrasensitive and accurate detection of Staphylococcus aureus (S. aureus) based on recycling of DNAzyme activation on gold nanoparticles-functionalized MXene nanomaterials (MXene@Au NPs). Electrochemiluminescent (ECL) emitter-labeled probe DNA (probe 2-Ru) containing the blocked DNAzyme was partly hybridized with aptamer and then captured by electrochemical (EC) indicator-labeled probe DNA (probe 1-MB) on electrode surface. When S. aureus presented, the conformation vibration of probe 2-Ru activated the blocked DNAzymes, leading to recycling cleavage of probe 1-MB and ECL tag close to electrode surface. Based on the reverse change tendencies of ECL and EC signals, aptasensor achieved S. aureus quantification from 5 to 108 CFU/mL. Moreover, the self-calibration characteristic of the aptasensor with dual-mode ratiometric readout ensured the reliable measurement of S. aureus in real samples. This work showed useful insight into sensing foodborne pathogenic bacteria.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , DNA Catalítico , Nanopartículas Metálicas , Técnicas Eletroquímicas , Ouro/química , Staphylococcus aureus/genética , Nanopartículas Metálicas/química , Aptâmeros de Nucleotídeos/química , Limite de Detecção
2.
Chem Eng J ; 452: 139646, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36249721

RESUMO

The persistent coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is still infecting hundreds of thousands of people every day. Enriching the kits for SARS-CoV-2 detection and developing the drugs for patient treatments are still urgently needed for combating the spreading virus, especially after the emergence of various mutants. Herein, an electrochemical biosensor has been fabricated in this work for the detection of SARS-CoV-2 via its papain-like cysteine protease (PLpro) and the screening of protease inhibitor against SARS-CoV-2 by using our designed chimeric peptide-DNA (pDNA) nanoprobes. Utilizing this biosensor, the sensitive and specific detection of SARS-CoV-2 PLpro can be conducted in complex real environments including blood and saliva. Five positive and five negative patient throat swab samples have also been tested to verify the practical application capability of the biosensor. Moreover, we have obtained a detection limit of 27.18 fM and a linear detection range from 1 pg mL-1 to 10 µg mL-1 (I = 1.63 + 4.44 lgC). Meanwhile, rapid inhibitor screening against SARS-CoV-2 PLpro can be also obtained. Therefore, this electrochemical biosensor has the great potential for COVID-19 combating and drug development.

3.
Nano Lett ; 22(3): 1083-1090, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049303

RESUMO

Bioinspired nanochannels have emerged as a powerful tool for bioengineering and biomedical research due to their robust mechanical and controllable chemical properties. Inspired by inward-rectifier potassium (K+) channels, herein, the charged peptide assembly has been introduced into a nano-confined space for the modulation of ion current rectification (ICR). Peptide-responsive reaction-triggered sequence changes can contribute to polarity conversion of the surface charge; therefore, ICR reversal (ICRR) is generated. Compared with other responsive elements, natural charged peptides show the merit of controllable charge polarity. By electrochemically monitoring the ICRR as an output signal, one can utilize the peptide assembly-mediated ICRR to construct an ionic sensory platform. In addition, a logic gate has been established to demonstrate the availability of an ionic sensory platform for inhibitor screening. As peptide nanoassemblies may also have various structures and functions due to their diverse properties, the ionic modulation system can provide alternatives for the assay of peptide-associated biotargets with biomedical applications.


Assuntos
Peptídeos , Transporte de Íons , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...