Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem A ; 126(40): 7193-7201, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36194534

RESUMO

The controllable preparation of ligand-protected clusters is still an unresolved problem, which may be due to that their formation mechanism is unclear. We propose that the ligand is the key to solve the above problems. Here, by using p-, m-, and o-methylbenzenethiol ligand protected gold clusters as examples, we try to explore the effect of ligand structures on ligand-protected gold clusters. The geometrical structures, relative stabilities and surface properties of small-sized ligand-protected gold clusters [Au-SR]1-8 (SR = p-/m-/o-MBT) have been systematically studied based on the density functional theory. The results show that the ground state structures of [Au-SR]1-8 clusters tend to form closed rings except for [Au-SR]1,2. The different structures of ligand have significant effect on the structures and stabilities of ligand-protected clusters. By analyzing their surface properties and possible growth patterns, it is found that [Au-SR]1,2 clusters serve as the basic building blocks, and the larger clusters can be regarded as the combinations of them. This study provides some insights into the effect of ligands on ligand-protected clusters, which is useful for understanding the formation mechanism of ligand-protected clusters.

2.
Materials (Basel) ; 15(9)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35591480

RESUMO

Using density functional theory and semiclassical Boltzmann transport equation, the lattice thermal conductivity and electronic transport performance of monolayer SnI2 were systematically investigated. The results show that its room temperature lattice thermal conductivities along the zigzag and armchair directions are as low as 0.33 and 0.19 W/mK, respectively. This is attributed to the strong anharmonicity, softened acoustic modes, and weak bonding interactions. Such values of the lattice thermal conductivity are lower than those of other famous two-dimensional thermoelectric materials such as MoO3, SnSe, and KAgSe. The two quasi-degenerate band valleys for the valence band maximum make it a p-type thermoelectric material. Due to its ultralow lattice thermal conductivities, coupled with an ultrahigh Seebeck coefficient, monolayer SnI2 possesses an ultrahigh figure of merits at 800 K, approaching 4.01 and 3.34 along the armchair and zigzag directions, respectively. The results indicate that monolayer SnI2 is a promising low-dimensional thermoelectric system, and would stimulate further theoretical and experimental investigations of metal halides as thermoelectric materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...