Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 193(2): 1297-1312, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37394940

RESUMO

During transgenic plant production, tissue culture often carries epigenetic, and genetic changes that underlie somaclonal variations, leading to unpredictable phenotypes. Additionally, specific treatments for rice (Oryza sativa) transformation processes may individually or jointly contribute to somaclonal variations, but their specific impacts on rice epigenomes toward transcriptional variations remain unknown. Here, the impact of individual transformation treatments on genome-wide DNA methylation and the transcriptome were examined. In addition to activating stress-responsive genes, individual transformation components targeted different gene expression modules that were enriched in specific functional categories. The transformation treatments strongly impacted DNA methylation and expression; 75% were independent of tissue culture. Furthermore, our genome-wide analysis showed that the transformation treatments consistently resulted in global hypo-CHH methylation enriched at promoters highly associated with downregulation, particularly when the promoters were colocalized with miniature inverted-repeat transposable elements. Our results clearly highlight the specificity of impacts triggered by individual transformation treatments during rice transformation with the potential association between DNA methylation and gene expression. These changes in gene expression and DNA methylation resulting from rice transformation treatments explain a significant portion of somaclonal variations, that is, way beyond the tissue culture effect.


Assuntos
Oryza , Oryza/genética , Epigenoma , Metilação de DNA/genética , Fenótipo , Elementos de DNA Transponíveis , Regulação da Expressão Gênica de Plantas
2.
PLoS One ; 11(5): e0155768, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27186981

RESUMO

Rice (Oryza sativa) is one of the most important crops in the world. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources-the relationship between genotype and phenotype-is very low. We used whole-genome sequencing to analyze a T-DNA-tagged transformant from the Taiwan Rice Insertional Mutants (TRIM) resource. The phenomics records for M0028590, one of the TRIM lines, revealed three phenotypes-wild type, large grains, and tillering dwarf-in the 12 T1 plants. Using the sequencing data for 7 plants from three generations of this specific line, we demonstrate that introgression from an indica rice variety might occur in one generation before the seed was used for callus generation and transformation of this line. In addition, the large-grain trait came from the GS3 gene of the introgressed region and the tillering dwarf phenotype came from a single nucleotide change in the D17 gene that occurred during the callus induction to regeneration of the transformant. As well, another regenerant showed completely heterozygous single-nucleotide polymorphisms across the whole genome. In addition to the known sequence changes such as T-DNA integration, single nucleotide polymorphism, insertion, deletion, chromosome rearrangement and doubling, spontaneous outcrossing occurred in the rice field may also explain some mutated traits in a tagged mutant population. Thus, the co-segregation of an integration event and the phenotype should be checked when using these mutant populations.


Assuntos
DNA Bacteriano , DNA de Plantas , Oryza/genética , Sementes/genética , Transferência Genética Horizontal , Genoma de Planta , Genótipo , Mutação , Fenótipo , Polimorfismo de Nucleotídeo Único , Recombinação Genética , Análise de Sequência de DNA
3.
Plant J ; 85(5): 648-59, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26833589

RESUMO

Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.


Assuntos
Estudos de Associação Genética/métodos , Variação Genética , Oryza/genética , Transformação Genética/genética , Agrobacterium/genética , Células Clonais/metabolismo , Produtos Agrícolas/genética , DNA Bacteriano/genética , DNA de Plantas/química , DNA de Plantas/genética , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mutação INDEL , Mutagênese Insercional , Oryza/classificação , Fenótipo , Plantas Geneticamente Modificadas , Ploidias , Polimorfismo de Nucleotídeo Único , Especificidade da Espécie , Taiwan , Técnicas de Cultura de Tecidos/métodos
4.
Plant Physiol ; 164(4): 2045-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24520156

RESUMO

Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.


Assuntos
Adaptação Fisiológica , Retroalimentação Fisiológica , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Oryza/fisiologia , Proteínas de Plantas/metabolismo , Adaptação Fisiológica/genética , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Germinação , Proteínas de Choque Térmico/genética , Homozigoto , Mutagênese Insercional/genética , Oryza/genética , Fenótipo , Proteínas de Plantas/genética , Proteólise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Plântula/fisiologia , Temperatura , Fatores de Tempo
5.
J Mater Chem B ; 1(39): 5279-5287, 2013 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32263331

RESUMO

A facile DNA delivery method would greatly facilitate studies of plant functional genomics. However, plant cell walls limit the utilization of nanoparticles on plant research. Here, we employed functionalized mesoporous silica nanoparticles (MSNs) to develop a MSN-mediated plant transient gene expression system. In this system, MSNs served as carriers to deliver foreign DNA into intact Arabidopsis thaliana roots without the aid of mechanical force. Gene expression was detected in the epidermal layer and in the more inner cortical and endodermal root tissues by both fluorescence and antibody labeling. This is a novel alternative to the conventional gene-gun or ultrasonic methods. In addition, the parameters that affect the MSN uptake and the mechanism and subcellular distribution of particles were also analyzed. The present study may provide valuable information on the manipulation of functional nanoparticles in plants and have significant impact on plant biotechnology.

6.
Plant Methods ; 4: 24, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18922163

RESUMO

BACKGROUND: The investigation of protein-protein interactions is important for characterizing protein function. Bimolecular fluorescence complementation (BiFC) has recently gained interest as a relatively easy and inexpensive method to visualize protein-protein interactions in living cells. BiFC uses "split YFP" tags on proteins to detect interactions: If the tagged proteins interact, they may bring the two split fluorophore components together such that they can fold and reconstitute fluorescence. The sites of interaction can be monitored using epifluorescence or confocal microscopy. However, "conventional" BiFC can investigate interactions only between two proteins at a time. There are instances when one may wish to offer a particular "bait" protein to several "prey" proteins simultaneously. Preferential interaction of the bait protein with one of the prey proteins, or different sites of interaction between the bait protein and multiple prey proteins, may thus be observed. RESULTS: We have constructed a series of gene expression vectors, based upon the pSAT series of vectors, to facilitate the practice of multi-color BiFC. The bait protein is tagged with the C-terminal portion of CFP (cCFP), and prey proteins are tagged with the N-terminal portions of either Venus (nVenus) or Cerulean (nCerulean). Interaction of cCFP-tagged proteins with nVenus-tagged proteins generates yellow fluorescence, whereas interaction of cCFP-tagged proteins with nCerulean-tagged proteins generates blue fluorescence. Additional expression of mCherry indicates transfected cells and sub-cellular structures. Using this system, we have determined in both tobacco BY-2 protoplasts and in onion epidermal cells that Agrobacterium VirE2 protein interacts with the Arabidopsis nuclear transport adapter protein importin alpha-1 in the cytoplasm, whereas interaction of VirE2 with a different importin alpha isoform, importin alpha-4, occurs predominantly in the nucleus. CONCLUSION: Multi-color BiFC is a useful technique to determine interactions simultaneously between a given" bait" protein and multiple "prey" proteins in living plant cells. The vectors we have constructed and tested will facilitate the study of protein-protein interactions in many different plant systems.

7.
Plant Cell Physiol ; 43(5): 549-54, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-12040102

RESUMO

1-Aminocyclopropane-1-carboxylic acid (ACC) oxidase catalyzes the oxidation of ACC to the gaseous plant hormone, ethylene. Although the enzyme does not contain a typical N-terminal consensus sequence for the transportation across the endoplasmic reticulum (ER), it has recently been shown to locate extracellularly by immunolocalization study. It was of interest to examine whether the enzyme contains a signal peptide that is overlooked by structure prediction. We observed that the in vitro translated apple ACC oxidase was not co-processed or imported by the canine pancreatic rough microsomes, a system widely used to identify signal peptide for protein translocation across ER, suggesting that apple ACC oxidase does not contain a signal peptide for ER transport. A highly specific polyclonal antibody raised against the recombinant apple ACC oxidase was used to examine the subcellular localization of the enzyme in apple fruit (Malus domestica, var. Golden Delicious). The location of ACC oxidase appeared to be mainly in the cytosol of the apple fruit pericarp tissue as was demonstrated by electron microscopy using immunogold-labeled antibodies. The pre-immune serum or pre-climacteric fruit control gave essentially no positive signal. Based on these observations, we conclude that ACC oxidase is a cytosolic protein.


Assuntos
Aminoácido Oxirredutases/metabolismo , Frutas/enzimologia , Malus/enzimologia , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/ultraestrutura , Aminoácidos Cíclicos/metabolismo , Citosol/enzimologia , Etilenos/metabolismo , Frutas/química , Immunoblotting , Malus/química , Microscopia Imunoeletrônica , Biossíntese de Proteínas , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...