Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 865: 161215, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584958

RESUMO

Application of nitrification inhibitors (NIs) in agricultural systems is an important strategy to enhance fertilizer nitrogen use efficiency and mitigate soil nitrous oxide (N2O) emissions. Here, we conducted a global meta-analysis of 88 published studies to assess the response of N2O-related functional gene and transcript abundances, and community structure to NIs application. Application of NIs significantly reduced the abundance of ammonia-oxidizing bacteria ammonia monooxygenase (AOB amoA) genes, AOB amoA transcript and nitrite reductase (nirS and nirK) genes. The effectiveness of NIs on reducing the AOB amoA abundance was influenced by N form, soil texture, soil pH and the experimental type (field vs. laboratory). Specifically, NIs were more effective when a mixed inorganic and organic N source was applied to a medium-textured soils. The NIs effectiveness increased with increasing soil pH. The response of AOB amoA abundance to NIs application was not affected by NI type, N rate, soil moisture, soil temperature and soil organic carbon (SOC). The inhibitory effect of NIs on nirS abundance increased with increasing soil temperature. NIs decreased soil nitrifying enzyme activity (NEA) and denitrifying enzyme activity (DEA) by 34.5 % and 27.0 %, respectively, leading to an overall 63.6 % reduction of N2O emissions. Soil NEA correlated positively with the abundance and community structure of AOB amoA but not with AOA amoA. Decrease in DEA with NIs application coincided with the decreasing nirS and nirK abundances. This global-scale assessment demonstrates that the effectiveness of NIs in reducing N2O emissions was attributed to the inhibiting effects on AOB amoA, nirS and nirK genes. Our findings highlight that NIs' inhibition effects on bacterial ammonia-oxidizing community and the encode enzymes in transformation of nitrite to nitric oxide are the main mechanisms for mitigation of N fertilizer-induced N2O emissions.


Assuntos
Archaea , Solo , Solo/química , Nitrificação , Amônia/química , Carbono , Fertilizantes/análise , Microbiologia do Solo , Óxido Nitroso/análise
2.
Glob Chang Biol ; 27(14): 3244-3256, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33931928

RESUMO

Drip irrigation is a useful practice to enhance water and fertilizer nitrogen (N) use efficiency. However, the use of drip irrigation to mitigate nitrous oxide (N2 O) emissions in agricultural systems globally is uncertain. Here, we performed a global meta-analysis of 485 field measurements of N2 O emissions from 74 peer-reviewed publications prior to March 2021, to quantify the fertilizer-induced N2 O emission factor (EF) of drip irrigation and examine the influencing factors of climate, crop, soil properties, and source and rate of fertilizer N application. The results showed that drip irrigation reduced (p < 0.05) N2 O emissions by 32% and 46% compared to furrow and sprinkler irrigation systems, respectively. The overall average EF with drip irrigation was 0.35%, being two-thirds lower than the IPCC Tier I default value of 1% (kg N2 O-N/kg added fertilizer N). The EF was not significantly affected by climate, crop, soil texture, soil organic carbon content, and pH. The EF was also not significantly (p > 0.05) affected by synthetic N fertilizer source despite a lower numerical value with enhanced efficiency than conventional fertilizers. The EF increased significantly (p < 0.001) with N addition rate in a binomial distribution. Using the IPCC default EF overestimated N2 O emissions inventories for drip-irrigated cropping systems by 7614 and 13,091 Mg per year for China and the globe, respectively. These results indicate that drip irrigation should be recommended as an essential N2 O mitigation strategy for irrigated crop production.


Assuntos
Óxido Nitroso , Solo , Agricultura , Carbono , China , Fertilizantes/análise , Nitrogênio , Óxido Nitroso/análise
3.
PeerJ ; 7: e7894, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31660271

RESUMO

Application of inorganic nitrogen (N) fertilizer and manure can increase nitrous oxide (N2O) emissions. We tested the hypothesis that increased N2O flux from soils amended with manure reflects a change in bacterial community structure and, specifically, an increase in the number of denitrifiers. To test this hypothesis, a field experiment was conducted in a drip-irrigated cotton field in an arid region of northwestern China. Treatments included plots that were not amended (Control), and plots amended with urea (Urea), animal manure (Manure) and a 50/50 mix of urea and manure (U+M). Manure was broadcast-incorporated into the soil before seeding while urea was split-applied with drip irrigation (fertigation) over the growing season. The addition treatments did not, as assessed by nextgen sequencing of PCR-amplicons generated from rRNA genes in soil, affect the alpha diversity of bacterial communities but did change the beta diversity. Compared to the Control, the addition of manure (U+M and Manure) significantly increased the abundance of genes associated with nitrate reduction (narG) and denitrfication (nirK and nosZ). Manure addition (U+M and Manure) did not affect the nitrifying enzyme activity (NEA) of soil but resulted in 39-59 times greater denitrifying enzyme activity (DEA). In contrast, urea application had no impact on the abundances of nitrifier and denitrifier genes, DEA and NEA; likely due to a limitation of C availability. DEA was highly correlated (r = 0.70-0.84, P < 0.01) with the abundance of genes narG, nirK and nosZ. An increase in the abundance of these functional genes was further correlated with soil NO3 -, dissolved organic carbon, total C, and total N concentrations, and soil C:N ratio. These results demonstrated a positive relationship between the abundances of denitrifying functional genes (narG, nirK and nosZ) and denitrification potential, suggesting that manure application increased N2O emission by increasing denitrification and the population of bacteria that mediated that process.

4.
Ann Bot ; 120(5): 755-764, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-28633337

RESUMO

Background and Aims: Understanding the changes in below-ground bud bank density and composition along a climatic gradient is essential for the exploration of species distribution pattern and vegetation composition in response to climatic changes. Nevertheless, investigations on bud banks along climatic gradients are still scarce. The below-ground bud bank is expected to be reduced in size in arid conditions, and costly, bud-bearing organs with long spacers would be replaced by more compact forms with buds that are better protected than those found in moist conditions. Methods: How total bud density and composition (different bud bank types) change with aridity (calculated value 0·43-0·91), mean annual precipitation (MAP; 93-420 mm) and mean annual temperature (MAT; -1·51 to 6·93 °C) was tested at 21 sites along a 2500-km climatic gradient in the temperate steppe of northern China. Conclusions: Belowground bud bank density decreases towards the dry, hot end of the climatic gradient. Based on the distribution of bud types along the climatic gradient, bulb buds and tiller buds of tussock grasses seem to be more resistant to environmental stress than rhizome buds. The dominance of annual species and smaller bud banks in arid region implies that plant reproductive strategies and vegetation composition will be shifted in scenarios of increased drought under future climate change.


Assuntos
Biodiversidade , Mudança Climática , Clima , Plantas , China , Raízes de Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...