Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Natl Sci Rev ; 9(12): nwac148, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36713590

RESUMO

While endogenous lipids are known to exhibit rhythmic oscillations, less is known about how specific lipids modulate circadian behavior. Through a series of loss-of-function and gain-of-function experiments on ceramide phosphoethanolamine (CPE) synthase of Drosophila, we demonstrated that pan-glial-specific deficiency in membrane CPE, the structural analog of mammalian sphingomyelin (SM), leads to arrhythmic locomotor behavior and shortens lifespan, while the reverse is true for increasing CPE. Comparative proteomics uncovered dysregulated synaptic glutamate utilization and transport in CPE-deficient flies. An extensive genetic screen was conducted to verify the role of differentially expressed proteins in circadian regulation. Arrhythmic locomotion under cpes1 mutant background was rescued only by restoring endogenous CPE or SM through expressing their respective synthases. Our results underscore the essential role of CPE in maintaining synaptic glutamate homeostasis and modulating circadian behavior in Drosophila. The findings suggest that region-specific elevations of functional membrane lipids can benefit circadian regulation.

2.
Pest Manag Sci ; 76(6): 2233-2242, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31976620

RESUMO

BACKGROUND: Insects cannot synthesize sterols and must acquire them from food. The mechanisms underlying how insects uptake dietary sterols are largely unknown except that NPC1b, an integral membrane protein, has been shown to be responsible for dietary cholesterol uptake in Drosophila melanogaster. However, whether NPC1b orthologs in other insect species, particularly the economically important pests, function similarly remains to be determined. RESULTS: In this study, we characterized the function of NPC1b in Helicoverpa armigera, a global pest that causes severe yield losses to many important crops. Limiting dietary cholesterol uptake to insects significantly inhibited food ingestion and weight gain. Compared to the wild-type H. armigera, the CRISPR/Cas9-edited NPC1b mutant larvae were incapable of getting adequate cholesterol and died in their early life stage. Gene expression profile and in situ hybridization analyses indicated that NPC1b was mainly expressed in the midgut where dietary cholesterol was absorbed. Expression of NPC1b was also correlated with the feeding life stages and was especially upregulated during early larval instars. Protein-ligand docking and sequence similarity analyses further demonstrated that NPC1b proteins of lepidopteran insects shared a relatively conserved cholesterol binding region, NPC1b_NTD, which, however, was highly divergent from bees-derived sequences. CONCLUSION: NPC1b was crucial for dietary cholesterol uptake and growth of H. armigera, and therefore could serve as an insecticide target for the development of a novel pest-management approach to control this economically significant insect pest with little off-target effect on bees and sterol-autotrophic animals. © 2020 Society of Chemical Industry.


Assuntos
Mariposas , Animais , Proteínas de Insetos , Insetos , Larva , Proteínas de Membrana , Proteína C1 de Niemann-Pick
3.
J Insect Sci ; 19(6)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31725878

RESUMO

Armyworm feeding in large, destructive groups is hugely difficult to control and the oriental armyworm, Mythimna separata (Walk), is one such pest. In this study, we reported a semisynthetic artificial diet for the oriental armyworm. This diet is based on Ritter's diet, a formula developed for Heliothis zea. The survival of M. separata was extremely low and only around 2% insects can reach the adult stage on Ritter's diet. But, it can reach up to 100% if corn leaf powder (CLP) was mixed, and insects grew faster and gained more mass. After testing a set of mixtures of Ritter's diet and CLP, we found that 14.3% was the optimal proportion of CLP for making the artificial diet. We then used chloroform to extract CLP. Insect performance was still much better on Ch-extracted CLP diets than that on Ritter's diet, but it was poorer than that on the diets containing unprocessed CLP, suggesting that the essential factor(s) was only partially extracted from corn leaf. We then used methanol and dichloromethane, two solvents differing in their polarity, to process the extractions and analyzed the extracted chemicals using gas chromatography-mass spectrometry (GC-MS). Insects had a better performance on dichloromethane-extracted CLP diet in comparison to methanol-extracted one, indicating that the important factor(s) is more prone to methanol extraction. The reported recipe here is useful for the research on M. separata and possibly other grain-crop eating armyworms. The functions of the chemicals extracted from corn leaf tissue can be investigated in the future studies.


Assuntos
Alimentos Formulados , Mariposas/crescimento & desenvolvimento , Animais , Pupa/crescimento & desenvolvimento , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...