Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 186: 108633, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603814

RESUMO

In the severe pollution area of nanoplastics (NPs) and cadmium ions (Cd2+), the joint effects of their high environmental concentrations on primary producers may differ from those of low environmental doses. Thus, we investigated the physiological changes, cell morphology, molecular dynamic simulation, phenotypic interactions, and metabolomics responses of C. pyrenoidosa to high environmental concentrations of NPs and Cd2+ after 12-d acclimation. After 12-d cultivation, mono-NPs and mono-Cd2+ reduced cell density and triggered antioxidant enzymes, extracellular polymeric substances (EPS) production, and cell aggregation to defend their unfavorable effects. Based on the molecular dynamic simulation, the chlorine atoms of the NPs and Cd2+ had charge attraction with the nitrogen and phosphorus atoms in the choline and phosphate groups in the cell membrane, thereby NPs and Cd2+ could adsorb on the cells to destroy them. In the joint exposure, NPs dominated the variations of ultrastructure and metabolomics and alleviated the toxicity of NPs and Cd2+. Due to its high environmental concentration, more NPs could compete with the microalgae for Cd2+ and thicken cell walls, diminishing the Cd2+ content and antioxidant enzymes of microalgae. NPs addition also decreased the EPS content, while the bound EPS with -CN bond was kept to detoxicate Cd2+. Metabolomics results showed that the NPs downregulated nucleotide, arachidonic acid, and tryptophan metabolisms, while the Cd2+ showed an opposite trend. Compared with their respective exposures, metabolomics results found the changes in metabolic molecules, suggesting the NPs_Cd2+ toxicity was mitigated by balancing nucleotide, arachidonic acid, tryptophan, and arginine and proline metabolisms. Consequently, this study provided new insights that simultaneous exposure to high environmental concentrations of NPs and Cd2+ mitigated microalgae cellular toxicity, which may change their fates and biogeochemical cycles in aquatic systems.


Assuntos
Cádmio , Metabolômica , Microalgas , Cádmio/toxicidade , Microalgas/efeitos dos fármacos , Microalgas/metabolismo , Simulação de Dinâmica Molecular , Poluentes Químicos da Água/toxicidade , Microplásticos/toxicidade
2.
Glob Chang Biol ; 30(2): e17201, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38385993

RESUMO

Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations ( P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, while P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT and P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.


Assuntos
Ecossistema , Florestas , Nitrogênio , Fósforo , China
3.
J Environ Manage ; 340: 118009, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37105101

RESUMO

Canopies play an important role in nitrogen (N) redistribution in forest ecosystems, and ignoring the canopy's role might bias estimates of the ecological consequences of anthropogenic atmospheric N deposition. We investigated the effects of the approach of N addition (Canopy addition vs. Understory addition) and level of N addition (25 kg N ha-1yr-1 vs. 50 kg N ha-1yr-1) on microbial residual carbon (MRC) accumulation in topsoil and subsoil. We found that the response of MRC to both approach and level of N addition varied greatly with soil depth in a tropical forest over eight years of continuous N addition. Specifically, N addition enhanced the accumulation of fungal and total MRC and their contribution to soil organic C (SOC) pools in the topsoil, whereas it decreased the contribution of fungal and total MRC to SOC in the subsoil. The contrasting effects of N addition on MRC contribution at varying soil depths were associated with the distinct response of microbial residues production. Understory N addition showed overall greater effects on MRC accumulation than canopy N addition did. Our results suggest that the canopy plays an important role in buffering the impacts of anthropogenic atmospheric N deposition on soil C cycling in tropical forests. The depth-dependent response of microbial residues to N addition also highlights the urgent need for further studies of different response mechanisms at different soil depths.


Assuntos
Ecossistema , Nitrogênio , Nitrogênio/análise , Carbono , Florestas , Solo/química , Árvores
5.
Glob Chang Biol ; 28(18): 5441-5452, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35653265

RESUMO

Foliar stable nitrogen (N) isotopes (δ15 N) generally reflect N availability to plants and have been used to infer about changes thereof. However, previous studies of temporal trends in foliar δ15 N have ignored the influence of confounding factors, leading to uncertainties on its indication to N availability. In this study, we measured foliar δ15 N of 1811 herbarium specimens from 12 plant species collected in southern China forests from 1920 to 2010. We explored how changes in atmospheric CO2 , N deposition and global warming have affected foliar δ15 N and N concentrations ([N]) and identified whether N availability decreased in southern China. Across all species, foliar δ15 N significantly decreased by 0.82‰ over the study period. However, foliar [N] did not decrease significantly, implying N homeostasis in forest trees in the region. The spatiotemporal patterns of foliar δ15 N were explained by mean annual temperature (MAT), atmospheric CO2 ( P CO 2 ), atmospheric N deposition, and foliar [N]. The spatiotemporal trends of foliar [N] were explained by MAT, temperature seasonality, P CO 2 , and N deposition. N deposition within the rates from 5.3 to 12.6 kg N ha-1  year-1 substantially contributed to the temporal decline in foliar δ15 N. The decline in foliar δ15 N was not accompanied by changes in foliar [N] and therefore does not necessarily reflect a decline in N availability. This is important to understand changes in N availability, which is essential to validate and parameterize biogeochemical cycles of N.


Assuntos
Dióxido de Carbono , Folhas de Planta , China , Nitrogênio/análise , Isótopos de Nitrogênio/análise , Folhas de Planta/química , Plantas , Árvores
6.
Ecol Evol ; 11(15): 10277-10289, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34367574

RESUMO

Estimation of leaf nutrient composition of dominant plant species from contrasting habitats (i.e., karst and nonkarst forests) provides an opportunity to understand how plants are adapted to karst habitats from the perspective of leaf traits. Here, we measured leaf traits-specific leaf area (SLA), concentrations of total carbon ([TC]), nitrogen ([TN]), phosphorus ([TP]), calcium ([Ca]), magnesium ([Mg]), manganese ([Mn]), minerals ([Min]), soluble sugars, soluble phenolics, lipids, and organic acids ([OA])-and calculated water-use efficiency (WUE), construction costs (CC), and N/P ratios, and searched for correlations between these traits of 18 abundant plant species in karst and nonkarst forests in southwestern China. Variation in leaf traits within and across the abundant species was both divergent and convergent. Leaf [TC], [Ca], [Min], [OA], and CC were habitat-dependent, while the others were not habitat- but species-specific. The correlations among [TN], [TP], SLA, [TC], CC, [Min], WUE, [OA], and CC were habitat-independent, and inherently associated with plant growth and carbon allocation; those between [CC] and [Lip], between [Ca] and [Mg], and between [Mg] and [WUE] were habitat-dependent. Habitat significantly affected leaf [Ca] and thus indirectly affected leaf [OA], [Min], and CC. Our results indicate that plants may regulate leaf [Ca] to moderate levels via adjusting leaf [OA] under both high and low soil Ca availability, and offer new insights into the abundance of common plant species in contrasting habitats.

7.
Ecol Lett ; 24(7): 1420-1431, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33894021

RESUMO

Phosphorus limitation on terrestrial plant growth is being incorporated into Earth system models. The global pattern of terrestrial phosphorus limitation, however, remains unstudied. Here, we examined the global-scale latitudinal pattern of terrestrial phosphorus limitation by analysing a total of 1068 observations of aboveground plant production response to phosphorus additions at 351 forest, grassland or tundra sites that are distributed globally. The observed phosphorus-addition effect varied greatly (either positive or negative), depending significantly upon fertilisation regime and production measure, but did not change significantly with latitude. In contrast, phosphorus-addition effect standardised by fertilisation regime and production measure was consistently positive and decreased significantly with latitude. Latitudinal gradient in the standardised phosphorus-addition effect was explained by several mechanisms involving substrate age, climate, vegetation type, edaphic properties and biochemical machinery. This study suggests that latitudinal pattern of terrestrial phosphorus limitation is jointly shaped by macro-scale driving forces and the fundamental structure of life.


Assuntos
Nitrogênio , Fósforo , Clima , Ecossistema , Florestas , Desenvolvimento Vegetal
8.
Glob Chang Biol ; 27(12): 2780-2792, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33742519

RESUMO

China is experiencing a high level of atmospheric nitrogen (N) deposition, which greatly affects the soil carbon (C) dynamics in terrestrial ecosystems. Soil aggregation contributes to the stability of soil structure and to soil C sequestration. Although many studies have reported the effects of N enrichment on bulk soil C dynamics, the underlying mechanisms explaining how soil aggregates respond to N enrichment remain unclear. Here, we used a meta-analysis of data from 76N manipulation experiments in terrestrial ecosystems in China to assess the effects of N enrichment on soil aggregation and its sequestration of C. On average, N enrichment significantly increased the mean weight diameter of soil aggregates by 10%. The proportion of macroaggregates and silt-clay fraction were significantly increased (6%) and decreased (9%) by N enrichment, respectively. A greater response of macroaggregate C (+15%) than of bulk soil C (+5%) to N enrichment was detected across all ecosystems. However, N enrichment had minor effects on microaggregate C and silt-clay C. The magnitude of N enrichment effect on soil aggregation varied with ecosystem type and fertilization regime. Additionally, soil pH declined consistently and was correlated with soil aggregate C. Overall, our meta-analysis suggests that N enrichment promotes particulate organic C accumulation via increasing macroaggregate C and acidifying soils. In contrast, increases in soil aggregation could inhibit microbially mediated breakdown of soil organic matter, causing minimal change in mineral-associated organic C. Our findings highlight that atmospheric N deposition may enhance the formation of soil aggregates and their sequestration of C in terrestrial ecosystems in China.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Nitrogênio/análise
9.
Sci Total Environ ; 757: 143847, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33316534

RESUMO

The rapid increases in atmospheric nitrogen (N) deposition have greatly affected the carbon (C) cycles of terrestrial ecosystems. Most studies concerning on the effects of N deposition have simulated N deposition by directly applying N to the understory and have therefore not accounted for the possibility of N absorption, retention, and transformation by the canopy. In this study, we compared the effects of understory addition of N (UN), canopy addition of N (CN) at 25 and 50 kg N ha-1 yr-1, and ambient addition of N (CK) on soil carbon-related processes in a subtropical forest. After seven years of addition, the contribution of new C from litter (Fnew) was more than 2× greater with UN treatments than with CN treatments. UN treatments significantly increased the activity of ß-1,4-glucosidase (BG) but reduced the activities of ß-1,4-N-acetylglucosaminidase (NAG), polyphenol oxidase (PPO), and peroxidase (PER). CN treatments, in contrast, did not alter the activities of extracellular enzyme. Compared to CN, UN treatments significantly enhanced soil organic carbon (SOC) and mean weight diameter (MWD, represents soil aggregate stability). Differences in the responses of SOC and MWD to CN and UN treatments were positively correlated with Fnew but negatively correlated with the activities of PPO and PER. The results imply that forest canopy mitigates the effects of atmospheric N inputs on SOC, and that conventional understory N addition might overestimate the positive effects of N deposition on forest soil C-related processes. We suggest that CN rather than UN should be used to simulate the effects of atmospheric N deposition on soil C dynamics in subtropical forests.


Assuntos
Nitrogênio , Solo , Carbono , Ecossistema , Florestas , Nitrogênio/análise , Microbiologia do Solo , Árvores
10.
Glob Chang Biol ; 27(2): 454-466, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33068453

RESUMO

The soil nitrogen (N) and phosphorus (P) availability often constrains soil carbon (C) pool, and elevated N deposition could further intensify soil P limitation, which may affect soil C cycling in these N-rich and P-poor ecosystems. Soil microbial residues may not only affect soil organic carbon (SOC) pool but also impact SOC stability through soil aggregation. However, how soil nutrient availability and aggregate fractions affect microbial residues and the microbial residue contribution to SOC is still not well understood. We took advantage of a 10-year field fertilization experiment to investigate the effects of nutrient additions, soil aggregate fractions, and their interactions on the concentrations of soil microbial residues and their contribution to SOC accumulation in a tropical coastal forest. We found that continuous P addition greatly decreased the concentrations of microbial residues and their contribution to SOC, whereas N addition had no significant effect. The P-stimulated decreases in microbial residues and their contribution to SOC were presumably due to enhanced recycling of microbial residues via increased activity of residue-decomposing enzymes. The interactive effects between soil aggregate fraction and nutrient addition were not significant, suggesting a weak role of physical protection by soil aggregates in mediating microbial responses to altered soil nutrient availability. Our data suggest that the mechanisms driving microbial residue responses to increased N and P availability might be different, and the P-induced decrease in the contribution of microbial residues might be unfavorable for the stability of SOC in N-rich and P-poor tropical forests. Such information is critical for understanding the role of tropical forests in the global carbon cycle.


Assuntos
Carbono , Solo , Carbono/análise , China , Ecossistema , Florestas , Nitrogênio/análise , Fósforo , Microbiologia do Solo
11.
Nat Commun ; 11(1): 637, 2020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32005808

RESUMO

Phosphorus (P) limitation of aboveground plant production is usually assumed to occur in tropical regions but rarely elsewhere. Here we report that such P limitation is more widespread and much stronger than previously estimated. In our global meta-analysis, almost half (46.2%) of 652 P-addition field experiments reveal a significant P limitation on aboveground plant production. Globally, P additions increase aboveground plant production by 34.9% in natural terrestrial ecosystems, which is 7.0-15.9% higher than previously suggested. In croplands, by contrast, P additions increase aboveground plant production by only 13.9%, probably because of historical fertilizations. The magnitude of P limitation also differs among climate zones and regions, and is driven by climate, ecosystem properties, and fertilization regimes. In addition to confirming that P limitation is widespread in tropical regions, our study demonstrates that P limitation often occurs in other regions. This suggests that previous studies have underestimated the importance of altered P supply on aboveground plant production in natural terrestrial ecosystems.


Assuntos
Fósforo/análise , Plantas/metabolismo , Clima , Ecossistema , Fertilizantes/análise , Nitrogênio/análise , Nitrogênio/metabolismo , Fósforo/metabolismo , Plantas/química , Solo/química , Árvores/química , Árvores/metabolismo
12.
Front Plant Sci ; 9: 117, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29472939

RESUMO

It is important to understand how eco-physiological characteristics shift in forests when elucidating the mechanisms underlying species replacement and the process of succession and stabilization. In this study, the dominant species at three typical successional stages (early-, mid-, and late-succession) in the subtropical forests of China were selected. At each stage, we compared the leaf construction costs (CC), payback time (PBT), leaf area based N content (NA), maximum CO2 assimilation rate (Pmax), specific leaf area (SLA), photosynthetic nitrogen use efficiency (PNUE), and leaf N allocated to carboxylation (NC), and to bioenergetics (NB). The relationships between these leaf functional traits were also determined. The results showed that the early-succession forest is characterized with significantly lower leaf CC, PBT, NA, but higher Pmax, SLA, PNUE, NC, and NB, in relation to the late-succession forest. From the early- to the late-succession forests, the relationship between Pmax and leaf CC strengthened, whereas the relationships between NB, NC, PNUE, and leaf CC weakened. Thus, the dominant species are able to decrease the allocation of the photosynthetic N fraction to carboxylation and bioenergetics during forest succession. The shift in these leaf functional traits and their linkages might represent a fundamental physiological mechanism that occurs during forest succession and stabilization.

13.
Glob Chang Biol ; 24(8): 3344-3356, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29450947

RESUMO

Climate is predicted to change over the 21st century. However, little is known about how climate change can affect soil phosphorus (P) cycle and availability in global terrestrial ecosystems, where P is a key limiting nutrient. With a global database of Hedley P fractions and key-associated physiochemical properties of 760 (seminatural) natural soils compiled from 96 published studies, this study evaluated how climate pattern affected soil P cycle and availability in global terrestrial ecosystems. Overall, soil available P, indexed by Hedley labile inorganic P fraction, significantly decreased with increasing mean annual temperature (MAT) and precipitation (MAP). Hypothesis-oriented path model analysis suggests that MAT negatively affected soil available P mainly by decreasing soil organic P and primary mineral P and increasing soil sand content. MAP negatively affected soil available P both directly and indirectly through decreasing soil primary mineral P; however, these negative effects were offset by the positive effects of MAP on soil organic P and fine soil particles, resulting in a relatively minor total MAP effect on soil available P. As aridity degree was mainly determined by MAP, aridity also had a relatively minor total effect on soil available P. These global patterns generally hold true irrespective of soil depth (≤10 cm or >10 cm) or site aridity index (≤1.0 or >1.0), and were also true for the low-sand (≤50%) soils. In contrast, available P of the high-sand (>50%) soils was positively affected by MAT and aridity and negatively affected by MAP. Our results suggest that temperature and precipitation have contrasting effects on soil P availability and can interact with soil particle size to control soil P availability.


Assuntos
Mudança Climática , Fósforo/análise , Solo/química , Clima , Ecossistema , Umidade , Modelos Teóricos , Chuva , Temperatura
14.
Front Plant Sci ; 8: 802, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28555153

RESUMO

It is well-known that drought has considerable effects on plant traits from leaf to ecosystem scales; however, little is known about the relative contributions of various traits within or between tree species in determining the plant's sensitivity or the tolerance to drought under field conditions. We conducted a field throughfall exclusion experiment to simulate short-term drought (∼67% throughfall exclusion during the dry season from October to March) and prolonged drought (∼67% throughfall exclusion prolonging the dry season from October to May) and to understand the effects of drought on two dominant tree species (Michelia macclurei and Schima superba) in subtropical forests of southern China. The morphological, physiological, and nutritional responses of the two species to the two types of drought were determined. There were significantly different morphological (leaf max length, max width, leaf mass per area), physiological (leaf proline) and nutritional (P, S, N, K, Ca, Mg) responses by M. macclurei and S. superba to prolonged drought. Comparison between the drought treatments for each species indicated that the trees responded species-specifically to the short-term and prolonged drought, with S. superba exhibiting larger plasticity and higher adaption than M. macclurei. M. macclurei responded more sensitively to prolonged drought in terms of morphology, proline content, and nutritional traits and to short-term drought with regard to soluble sugars content. The differential species-specific responses to drought will allow us to estimate the changes in dominant trees in subtropical forests of China that have experienced a decade's worth of annual seasonal drought.

15.
Rapid Commun Mass Spectrom ; 29(15): 1403-10, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-26147480

RESUMO

RATIONALE: Aerosols play an important role in depositing metals into forest ecosystems. Better understanding of forest aerosols with regard to their metal content and their possible sources is of great significance for air quality and forest health. METHODS: Particulate matter with an aerodynamic diameter less than 2.5 µm (PM(2.5)) in aerosols was collected every month for 20 months using moderate-volume samplers in the Dinghushan (DHS) nature reserve in southern China. The concentrations of metals (Al, Cd, Mn, Ni, Pb, and Zn) as well as the Pb isotopic ratios in the PM(2.5) samples were measured by inductively coupled plasma mass spectrometry (ICP-MS). RESULTS: Moderate pollution with aerosol PM(2.5) was detected at the DHS nature reserve with the air mass from mainland China being the predominant PM(2.5) source. The high enrichment factors (EFs) for the heavy metals Pb, Cd, and Zn, as well as the PM(2.5) mass concentrations, coupled with backward trajectory analysis, indicated the anthropogenic origins of the PM(2.5) and of the heavy metals in the PM(2.5). The Pb isotopic ratios revealed the contributions from various Pb sources, which varied between seasons. CONCLUSIONS: Industrial emissions and automobile exhaust from the Pearl River Delta (PRD) primarily contributed to the anthropogenic Pb in PM(2.5), although there was occasionally a contribution from coal combustion during the wet season. Pb isotopic ratios analyses are helpful for air quality assessment and Pb source tracing.

16.
Sci Rep ; 5: 11245, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-26059183

RESUMO

Increasing atmospheric nitrogen (N) deposition could profoundly impact community structure and ecosystem functions in forests. However, conventional experiments with understory addition of N (UAN) largely neglect canopy-associated biota and processes and therefore may not realistically simulate atmospheric N deposition to generate reliable impacts on forest ecosystems. Here we, for the first time, designed a novel experiment with canopy addition of N (CAN) vs. UAN and reviewed the merits and pitfalls of the two approaches. The following hypotheses will be tested: i) UAN overestimates the N addition effects on understory and soil processes but underestimates those on canopy-associated biota and processes, ii) with low-level N addition, CAN favors canopy tree species and canopy-dwelling biota and promotes the detritus food web, and iii) with high-level N addition, CAN suppresses canopy tree species and other biota and favors rhizosphere food web. As a long-term comprehensive program, this experiment will provide opportunities for multidisciplinary collaborations, including biogeochemistry, microbiology, zoology, and plant science to examine forest ecosystem responses to atmospheric N deposition.


Assuntos
Ecossistema , Florestas , Nitrogênio/química , Atmosfera
17.
Environ Pollut ; 196: 53-9, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25299794

RESUMO

The temporal variation of polycyclic aromatic hydrocarbons (PAHs) concentrations as well as the lipid content in the xylem of Masson pine trees sampled from the same site were determined and compared with the days of haze occurrence and with the historical PAHs reported in sedimentary cores. The patterns of the lipid content as well as the PAH concentrations based on the xylem dry weight (PAHs-DW) decreased from the heartwood to the sapwood. The trajectories of PAHs normalized by xylem lipid content (PAHs-LC) coincided well with the number of haze-occurred days and were partly similar with the historical changes in airborne PAHs recorded in the sedimentary cores. The results indicated that PAHs-LC in the xylem of conifers might reliably reflect the historical changes in airborne PAHs at a regional scale. The species-specificity should be addressed in the utility and application of dendrochemical monitoring on historical and comparative studies of airborne PAHs.


Assuntos
Poluentes Atmosféricos/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Traqueófitas/química , Xilema/química , Poluição do Ar/estatística & dados numéricos , Monitoramento Ambiental/métodos , Lipídeos , Pinus/química
18.
Int J Environ Res Public Health ; 11(3): 2642-56, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24599040

RESUMO

The upper layer of forest soils (0-20 cm depth) were collected from urban, suburban, and rural areas in the Pearl River Delta of Southern China to estimate the distribution and the possible sources of polycyclic aromatic hydrocarbons (PAHs). Total concentrations of PAHs in the forest soils decreased significantly along the urban-suburban-rural gradient, indicating the influence of anthropogenic emissions on the PAH distribution in forest soils. High and low molecular weight PAHs dominated in the urban and rural forest soils, respectively, implying the difference in emission sources between the areas. The values of PAH isomeric diagnostic ratios indicated that forest soil PAHs were mainly originated from traffic emissions, mixed sources and coal/wood combustion in the urban, suburban and rural areas, respectively. Principal component analysis revealed that traffic emissions, coal burning and residential biomass combustion were the three primary contributors to forest soil PAHs in the Pearl River Delta. Long range transportation of PAHs via atmosphere from urban area might also impact the PAHs distribution in the forest soils of rural area.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/análise , Poluentes do Solo/análise , China , Análise de Componente Principal , Rios , Solo/química , Urbanização
19.
Biomed Res Int ; 2013: 192986, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936780

RESUMO

A Chinese medicinal fern Blechnum orientale (Linn) was separately collected from polluted and unpolluted sites to determine whether it could accumulate hazardous pollutants or not. Metal concentrations (Cu, Zn, Mn, Pb, Cd, Cr, As, and Hg) both in the fronds and roots and polycyclic aromatic hydrocarbons (PAHs) in the fronds of this fern were quantified. At both sites, roots of B. orientale had significantly higher heavy metals than the fronds. Concentrations of Pb, As, Hg, Cd, and Cu in the fronds at the polluted site were more than 2, 6, 7, 14, 5, and 13 times of those at the unpolluted site. Translocation factor and bioaccumulation factor implied that B. orientale did not have a good ability to transport heavy metals from the roots to the fronds. Total PAHs in the fronds at the polluted site were significantly higher than those at the unpolluted site, indicating the physiological PAHs absorption by B. orientale growing at polluted sites. Uptake of pollutants via stomata might be the main reason causing the significant accumulation of hazardous pollutants in the fronds of B. orientale. Large-scale systematical survey and intensive monitoring on pollutants in this medicinal fern should be necessarily strengthened.


Assuntos
Poluentes Atmosféricos , Gleiquênias/química , Metais Pesados/química , Absorção , Poluentes Atmosféricos/isolamento & purificação , Gleiquênias/metabolismo , Humanos , Metais Pesados/isolamento & purificação , Metais Pesados/toxicidade
20.
J Plant Res ; 126(1): 95-103, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22806581

RESUMO

Physiological leaf traits and accumulation of pollutants of ten woody species in response to air pollution at seriously polluted site Sanguigang (SGG) and control site Maofengshan (MFS) in Southern China were studied. Net photosynthetic rates of most species at SGG were lower than those at MFS, but stomatal conductance (g(s)) showed opposite trend. The specific leaf area of Aporusa dioica, Sapium discolor, Schefflera octophylla and Toxicodendron succedaneum were significantly, 46.77, 13.09, 55.11 and 23.51 %, higher in SGG than in MFS, while chlorophyll content being the opposite. A. dioica had the highest sulphur (S) content at both sites (11.74 mg g(-1) at SGG and 11.07 mg g(-1) at MFS). Heavy metals concentrations were generally higher in species at SGG than at MFS. S. octophylla showed significantly higher concentrations of Zn, Cd and Mn (341.81, 2.41 and 2,287.29 µg g(-1)) than other species at SGG. Moreover, A. dioica had the highest Pb concentration (9.19 µg g(-1)), and L. glutinosa showed the highest Cr concentration (3.40 µg g(-1)). According to the integrated results, we infer that A. dioica, S. octophylla and L. glutinosa are the promising species for phytoremediation in the ceramic industry polluted environment.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise , Metais Pesados/análise , Metais Pesados/toxicidade , Folhas de Planta/química , Fenômenos Fisiológicos Vegetais/efeitos dos fármacos , Biodegradação Ambiental , Cerâmica , China , Exposição Ambiental/efeitos adversos , Monitoramento Ambiental , Folhas de Planta/efeitos dos fármacos , Estações do Ano , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...