Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 33(5-6): 237-249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34405694

RESUMO

Solid tumors are characterized by abundant extracellular matrix originating from cancer-associated fibroblasts (CAFs). High collagen content can trigger the collapse of vascular system in the tumor and form physical barrier that eventually impedes the penetration of drug particles and cytotoxic immune cells. Moreover, CAFs is able to promote the enrichment of tumor-associated macrophages (TAMs) and differentiation of myeloid-derived suppressor cells (MDSCs) that work in concert to develop a highly immunosuppressive tumor microenvironment (TME). In this study, we investigated if halofuginone, an antifibrotic drug, can augment the therapeutic effects of oncolytic vesicular stomatitis virus (VSV). The results revealed that halofuginone significantly disrupts the collagen network in tumors and promotes the distribution of VSV and infiltration of CD8+ T cells (p < 0.0001). Combined treatment of VSV and halofuginone also modulates the immunosuppressive TME via deletion of TAM, MDSCs, and regulatory T cells (Tregs). Collectively, the combination therapy remarkably inhibits the tumor growth in multiple murine models and prolongs survival of mice. The results demonstrate the clinical potential of halofuginone in combination with oncolytic virus.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Estomatite Vesicular , Animais , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Camundongos , Neoplasias/terapia , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Microambiente Tumoral , Estomatite Vesicular/terapia , Vírus da Estomatite Vesicular Indiana
2.
Acta Biomater ; 135: 567-581, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34506976

RESUMO

Tumor vaccines that induce effective and sustained antitumor immunity are highly promising for cancer therapy. However, the antitumor potential of these vaccines is weakened due to the immunosuppressive characteristics of the tumor microenvironment (TME). Cancer-associated fibroblasts (CAFs) are the most abundant stromal cells within the TME; they play an important role in tumor growth, metastasis, immunosuppression, and drug resistance. Fibroblast activation protein-α (FAP) is overexpressed in CAFs in more than 90% of human tumor tissues. Further, FAP+CAFs are an ideal interstitial target for the immunotherapy of solid tumors. Exosomes derived from tumor cells contain many tumor antigens, which can be used as the basis of tumor vaccines that elicit strong antitumor immunity. Almost all exosome-based cancer vaccines have been designed and developed for tumor parenchymal cells. Moreover, the exosome production is very low and the purification is very difficult, limiting their clinical application as tumor vaccines. In this study, we developed FAP gene-engineered tumor cell-derived exosome-like nanovesicles (eNVs-FAP) as a tumor vaccine that can be prepared easily and in large quantities. The eNVs-FAP vaccine inhibited tumor growth by inducing strong and specific cytotoxic T lymphocyte (CTL) immune responses against tumor cells and FAP+CAFs and reprogramming the immunosuppressive TME in the colon, melanoma, lung, and breast cancer models. Moreover, eNVs-FAP vaccine-activated cellular immune responses could promote tumor ferroptosis by releasing interferon-gamma (IFN-γ) from CTLs and depleting FAP+CAFs. Thus, eNVs-FAP is a candidate tumor vaccine targeting both the tumor parenchyma and the stroma. STATEMENT OF SIGNIFICANCE: Nanovaccines can activate immune cells and promote an antitumor immune response. In this study, we developed the fibroblast activation protein-α (FAP) gene-engineered tumor cell-derived exosome-like vesicle vaccines (eNVs-FAP). A large number of eNVs-FAP were obtained by continuously squeezing FAP gene-engineered tumor cells. eNVs-FAP showed excellent antitumor effects in a variety of tumor-bearing mouse models. The mechanistic analysis showed that eNVs-FAP promoted the maturation of dendritic cells (DCs), increased the infiltration of effector T cells into target tumor cells and FAP-positive cancer-associated fibroblasts (FAP+CAFs), and reduced the proportion of immunosuppressive cells, including M2-like tumor-associated macrophages (M2-TAMs), myeloid-derived suppressor cells (MDSCs), and regulatory T cells (Tregs), in the tumor microenvironment (TME). Moreover, the clearance of FAP+CAFs helped enhance interferon-gamma-induced tumor cell ferroptosis.


Assuntos
Vacinas Anticâncer , Exossomos , Ferroptose , Neoplasias , Animais , Linhagem Celular Tumoral , Camundongos , Neoplasias/terapia , Microambiente Tumoral
3.
Mol Ther Methods Clin Dev ; 19: 35-46, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-32995358

RESUMO

To ensure the high purity and biological activity of the adenovirus vector to be used for clinical applications, a stable and linearly scalable preparation method is highly imperative. During the adenovirus-harvesting process, the Triton X-100-based lysis method possesses the advantages of higher efficiency as well as easier linearization and amplification. Most Triton X-100 can be removed from the adenovirus sample by chromatographic purification. However, there is no report that a small amount of residual Triton X-100, present in adenovirus sample, can affect the particle integrity, infectivity, and structure of adenoviruses. Here, we found that although residual Triton X-100 affected the short-term stability, purity, infectivity, and structure of adenoviruses at 37°C, it did not hamper these properties of adenoviruses at 4°C. This study suggests that although the Triton X-100-based lysis method is a simple, efficient, and easy-to-scale process for lysing host cells to release the adenovirus, the storage conditions of adenovirus products must be taken into consideration.

4.
Eur J Pharm Sci ; 141: 105090, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626964

RESUMO

With the rapid development of gene therapy, gene-based medicine with adenovirus as vectors has become a new method for disease treatment. However, there are still enormous challenges in the large-scale production of adenoviruses for clinical use. Recent reports show that ion-exchange chromatography (IEC) is an effective tool for the isolation and purification of adenovirus. However, during the separation and purification, host cell protein and DNA, as well as serum from the culture medium, can non-specifically occupy numerous binding sites of the chromatography packings, thereby reducing the binding between the adenovirus and packing media. We here report a novel method for highly efficient purification of adenoviruses by increasing the salt concentrations of the samples to be ultrafiltrated by tangential flow filtration, the diafiltration buffer, and the samples for IEC purification. This method could significantly remove a large amount of serum proteins and host cell proteins, increase the amount of sample loaded on the IEC column, and improve the binding of the adenovirus samples to the packing media. A purity of > 95% could be obtained after one chromatography operation, and the number of purification steps and the amount of used packing media were reduced. The method is simple, economical, and efficient, and has excellent applications.


Assuntos
Adenoviridae/isolamento & purificação , Vetores Genéticos/isolamento & purificação , Reatores Biológicos , Proteínas Sanguíneas , Soluções Tampão , Cromatografia por Troca Iônica , Células HEK293 , Humanos , Cloreto de Magnésio/química , Cloreto de Sódio/química , Ultrafiltração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...