Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Gen Physiol ; 156(8)2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38968404

RESUMO

We used voltage clamp fluorometry to probe the movement of the S4 helix in the voltage-sensing domain of the sea urchin HCN channel (spHCN) expressed in Xenopus oocytes. We obtained markedly different fluorescence responses with either ALEXA-488 or MTS-TAMRA covalently linked to N-terminal Cys332 of the S4 helix. With hyperpolarizing steps, ALEXA-488 fluorescence increased rapidly, consistent with it reporting the initial inward movement of S4, as previously described. In contrast, MTS-TAMRA fluorescence increased more slowly and its early phase correlated with that of channel opening. Additionally, a slow fluorescence component that tracked the development of the mode shift, or channel hysteresis, could be resolved with both labels. We quantitated this component as an increased deactivation tail current delay with concomitantly longer activation periods and found it to depend strongly on the presence of K+ ions in the pore. Using collisional quenching experiments and structural predictions, we established that ALEXA-488 was more exposed to solvent than MTS-TAMRA. We propose that components of S4 movement during channel activation can be kinetically resolved using different fluorescent probes to reveal distinct biophysical properties. Our findings underscore the need to apply caution when interpreting voltage clamp fluorometry data and demonstrate the potential utility of different labels to interrogate distinct biophysical properties of voltage-gated membrane proteins.


Assuntos
Corantes Fluorescentes , Xenopus laevis , Animais , Corantes Fluorescentes/química , Ativação do Canal Iônico/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/genética , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Oócitos/metabolismo , Ouriços-do-Mar , Potenciais da Membrana/fisiologia
2.
Neuropharmacology ; 221: 109295, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36257447

RESUMO

Genetic sequencing is identifying an expanding number of variants of GABAA receptors associated with human epilepsies. We identified a new de novo variant of the ß2 subunit (ß2L51M) of the inhibitory GABAA receptor associated with seizures. Our analysis determined the pathogenicity of the variant and the effects of anti-seizure medications. Our data demonstrates that the variant reduced cell surface trafficking and peak GABA-gated currents. Synaptic currents mediated by variant-containing receptors decayed faster than wild-type and single receptor currents showed that the variant shortened the duration of receptor activity by decreasing receptor open times. We tested the effects of the anti-seizure medications, midazolam, carbamazepine and valproate and found that all three enhance variant receptor surface expression. Additionally, midazolam restored receptor function by increasing single receptor active periods and synaptic current decay times towards wild-type levels. By contrast, valproate increased synaptic peak currents, event frequency and promoted synaptic bursting. Our study identifies a new disease-causing variant to the GABAA receptor, profiles its pathogenic effects and demonstrates how anti-seizure drugs correct its functional deficits.


Assuntos
Epilepsia , Receptores de GABA-A , Humanos , Receptores de GABA-A/metabolismo , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Midazolam/farmacologia , Midazolam/uso terapêutico , Epilepsia/tratamento farmacológico , Ácido gama-Aminobutírico/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...