Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(5): e0216214, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31048906

RESUMO

Noisy galvanic vestibular stimulation (nGVS) has been shown to improve dynamic walking stability, affect postural responses, enhance balance in healthy subjects, and influence motor performance in individuals with Parkinson's disease. Although the studies to fully characterize the effect of nGVS are still ongoing, stochastic resonance theory which states that the addition of noisy signal may enhance a weak sensory input signals transmission in a non-linear system may provide a possible explanation for the observed positive effects of nGVS. This study explores the effect of nGVS on fine tracking behavior in healthy subjects. Ten healthy participants performed a computer-based visuomotor task by controlling an object with a joystick to follow an amplitude-modulated signal path while simultaneously receiving a sham or pink noise nGVS. The stimulation was generated to have a zero-mean, linearly detrended 1/f-type power spectrum, Gaussian distribution within 0.1-10 Hz range, and a standard deviation (SD) set to 90% based on each participant's cutaneous threshold value. Results show that simultaneous nGVS delivery statistically improved the tracking performance with a decreased root-mean-squared error of 5.71±6.20% (mean±SD), a decreased time delay of 11.88±9.66% (mean±SD), and an increased signal-to-noise ratio of 2.93% (median, interquartile range (IQR) 3.31%). This study showed evidence that nGVS may be beneficial in improving sensorimotor performance during a fine motor tracking task requiring fine wrist movement in healthy subjects. Further research with a more comprehensive subset of tasks is required to fully characterize the effects of nGVS on fine motor skills.


Assuntos
Estimulação Elétrica/métodos , Destreza Motora/fisiologia , Vestíbulo do Labirinto/patologia , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Ruído , Equilíbrio Postural/fisiologia , Vestíbulo do Labirinto/efeitos dos fármacos , Caminhada/fisiologia
2.
Med Eng Phys ; 68: 25-34, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30975632

RESUMO

Evaluating an operator's mental workload during work activities is crucial to maintain safety and performance. By minimizing human error associated with work demands, especially in a hazardous environment, potentially serious errors may be avoided. This study aims to assess the feasibility of using an in-ear EEG system to classify the user's state in a visuomotor tracking task that may influence mental workload and motor action. A two-channel wireless in-ear EEG system was used to record EEG signals while subjects performed the task using a joystick to manipulate an object displayed on a monitor. A highly comparative time series analysis was employed on the processed signals to extract and select the top features for each subject individually. The features sets were trained and tested with support vector machines, random forest, linear discriminant analysis, subspace discriminant, and neural network to compare their performances. Models trained on two trials, each 14 minutes in duration and tested on the other trial were able to yield an accuracy of 79.30 ± 4.85% on average across the ten participants with an individualized moving average threshold filter and classifier. This proof-of-concept study demonstrates the feasibility of using a two-channel wireless in-ear EEG system as a viable solutions to develop wearable devices to detect mental workload associated with the execution of visuomotor tasks.


Assuntos
Cognição , Orelha , Eletroencefalografia , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Processamento de Sinais Assistido por Computador , Fatores de Tempo , Adulto Jovem
3.
Front Neurosci ; 12: 633, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30254564

RESUMO

As a neurodegenerative movement disorder, Parkinson's disease (PD) is commonly characterized by motor symptoms such as resting tremor, rigidity, bradykinesia, and balance and postural impairments. While the main cause of PD is still not clear, it is shown that the basal ganglia loop, which has a role in adjusting a planned movement execution through fine motor control, is altered during this disease and contributes toward the manifested motor symptoms. Galvanic vestibular stimulation (GVS) is a non-invasive technique to influence the vestibular system and stimulate the motor system. This study explores how the motor symptoms of upper and lower extremities in PD are instantly affected by vestibular stimulation. In this regard, direct current GVS was applied to 11 individuals with PD on medication while they were performing two sets of experiments: (1) Instrumented Timed Up and Go (iTUG) test and (2) finger tapping task. The performance of participants was recorded with accelerometers and cameras for offline processing of data. Several outcome measures including coefficient of variation of the step duration, gait phase, phase coordination index, tapping score, and the number and duration of manual motor blocks (MMBs) were considered for objective quantifying of performance. Results showed that almost all of considered outcome measures were improved with the application of GVS and that the improvement in the coefficient of variation of the step duration, the tapping score, and the number of MMBs was statistically significant (p-value < 0.05). The results of this study suggest that GVS can be used to alleviate some of the common motor symptoms of PD. Further research is required to fully characterize the effects of GVS and determine its efficacy in the long term.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA