Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(3): e202203069, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36250260

RESUMO

Modified trans-cyclooctenes (TCO) are capable of highly efficient molecular manipulations in biological environments, driven by the bioorthogonal reaction with tetrazines (Tz). The development of click-cleavable TCO has fueled the field of in vivo chemistry and enabled the design of therapeutic strategies that have already started to enter the clinic. A key element for most of these approaches is the implementation of a cleavable TCO linker. So far, only one member of this class has been developed, a compound that requires a high synthetic effort, mainly to fulfill the multilayered demands on its chemical structure. To tackle this limitation, we developed a dioxolane-fused cleavable TCO linker (dcTCO) that can be prepared in only five steps by applying an oxidative desymmetrization to achieve diastereoselective introduction of the required functionalities. Based on investigation of the structure, reaction kinetics, stability, and hydrophilicity of dcTCO, we demonstrate its bioorthogonal application in the design of a caged prodrug that can be activated by in-situ Tz-triggered cleavage to achieve a remarkable >1000-fold increase in cytotoxicity.


Assuntos
Ciclo-Octanos , Estresse Oxidativo , Oxirredução , Cinética , Ciclo-Octanos/química , Ciclo-Octanos/uso terapêutico
2.
Chembiochem ; 23(20): e202200363, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-35921044

RESUMO

Bond-cleavage reactions triggered by bioorthogonal tetrazine ligation have emerged as strategies to chemically control the function of (bio)molecules and achieve activation of prodrugs in living systems. While most of these approaches make use of caged amines, current methods for the release of phenols are limited by unfavorable reaction kinetics or insufficient stability of the Tz-responsive reactants. To address this issue, we have implemented a self-immolative linker that enables the connection of cleavable trans-cyclooctenes (TCO) and phenols via carbamate linkages. Based on detailed investigation of the reaction mechanism with several Tz, revealing up to 96 % elimination after 2 hours, we have developed a TCO-caged prodrug with 750-fold reduced cytotoxicity compared to the parent drug and achieved in situ activation upon Tz/TCO click-to-release.


Assuntos
Compostos Heterocíclicos , Pró-Fármacos , Fenóis , Compostos Heterocíclicos/química , Ciclo-Octanos/química , Aminas , Carbamatos , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...