Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(12): e23293, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37950627

RESUMO

Plumbagin is used in traditional medicine because of its anti-inflammatory and anti-microbial properties. As a naphthoquinone, plumbagin triggers the production of reactive oxygen species (ROS). In vitro cancer studies showed that plumbagin triggers apoptosis in cancer cells through ROS production. As cancer-mediated chronic inflammation can affect bone density, it was hypothesized that plumbagin might directly inhibit the formation of bone-resorbing osteoclasts. We previously showed that the effect of plumbagin on osteoclastogenesis differed between bone marrow-derived macrophages and the macrophage cell line RAW 264.7. Although RAW 264.7 macrophages are able to initiate the gene program required for osteoclastogenesis, only primary macrophages successfully differentiate into osteoclasts. Here, we show that RAW 264.7 cells are more sensitive toward plumbagin-induced apoptosis. In the presence of plumbagin and the cytokine RANKL, which triggers ROS production to drive osteoclastogenesis, RAW 264.7 macrophages produce increased amounts of ROS and die. Addition of the ROS scavenger N-acetyl cysteine prevented cell death, linking the failure to differentiate to increased ROS levels. RAW 264.7 cells show reduced expression of genes protective against oxidative stress, while primary macrophages have a higher tolerance toward ROS. Our data suggest that it is indispensable to consider cell (line)-intrinsic properties when studying phytochemicals.


Assuntos
Naftoquinonas , Osteoclastos , Osteoclastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Naftoquinonas/farmacologia , Diferenciação Celular , Ligante RANK/farmacologia , Ligante RANK/metabolismo
2.
Clin Immunol ; 257: 109814, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879380

RESUMO

In Rheumatoid Arthritis (RA), regulatory T cells (Tregs) have been found to be enriched in the synovial fluid. Despite their accumulation, they are unable to suppress synovial inflammation. Recently, we showed the synovial enrichment of interleukin-9 (IL-9) producing helper T cells and its positive correlation with disease activity. Therefore, we investigated the impact of IL-9 on synovial Tregs in RA. Here, we confirmed high synovial Tregs in RA patients, however these cells were functionally impaired in terms of suppressive cytokine production (IL-10 and TGF-ß). Abrogating IL-9/ IL-9 receptor interaction could restore the suppressive cytokine production of synovial Tregs and reduce the synovial inflammatory T cells producing IFN-γ, TNF-α, IL-17. However, blocking these inflammatory cytokines failed to show any effect on IL-9 producing T cells, highlighting IL-9's hierarchy in the inflammatory network. Thus, we propose that blocking IL-9 might dampen synovial inflammation by restoring Tregs function and inhibiting inflammatory T cells.


Assuntos
Artrite Reumatoide , Interleucina-9 , Linfócitos T Reguladores , Humanos , Artrite Reumatoide/metabolismo , Citocinas , Inflamação , Interleucina-9/metabolismo , Líquido Sinovial , Membrana Sinovial , Linfócitos T Reguladores/metabolismo
3.
Virulence ; 14(1): 2254599, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37655977

RESUMO

Chronic implant-related bone infections are a severe complication in orthopaedic surgery. Biofilm formation on the implant impairs the immune response, leading to bacterial persistence. In a previous study, we found that Staphylococcus aureus (SA) induced interferon regulatory factor 3 (IRF3) activation and Ifnb expression only in its planktonic form but not in the biofilm. The aim of this study was to clarify the role of the stimulator of interferon genes (STING) in this process. We treated RAW 264.7 macrophages with conditioned media (CM) generated from planktonic or biofilm cultured SA in combination with agonists or inhibitors of the cyclic GMP-AMP synthase (cGAS)/STING pathway. We further evaluated bacterial gene expression of planktonic and biofilm SA to identify potential mediators. STING inhibition resulted in the loss of IRF3 activation and Ifnb induction in SA planktonic CM, whereas STING activation induced an IRF3 dependent IFN-ß response in SA biofilm CM. The expression levels of virulence-associated genes decreased during biofilm formation, but genes associated with cyclic dinucleotide (CDN) synthesis did not correlate with Ifnb induction. We further observed that cGAS contributed to Ifnb induction by SA planktonic CM, although cGAS activation was not sufficient to induce Ifnb expression in SA biofilm CM. Our data indicate that the different degrees of virulence associated with SA planktonic and biofilm environments result in an altered induction of the IRF3 mediated IFN-ß response via the STING pathway. This finding suggests that the STING/IRF3/IFN-ß axis is a potential candidate as an immunotherapeutic target for implant-related bone infections.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Humanos , Staphylococcus aureus/genética , Genes Bacterianos , Interferon beta/genética , Macrófagos , Nucleotidiltransferases , Fator Regulador 3 de Interferon/genética
4.
Inflamm Res ; 72(7): 1465-1484, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37329360

RESUMO

INTRODUCTION: The pathophysiology of chronic implant-related bone infections is characterized by an increase in osteoclast numbers and enhanced bone resorption. Biofilms are a major reason for chronicity of such infections as the biofilm matrix protects bacteria against antibiotics and impairs the function of immune cells. Macrophages are osteoclast precursor cells and therefore linked to inflammation and bone destruction. OBJECTIVE AND METHOD: Investigations on the impact of biofilms on the ability of macrophages to form osteoclasts are yet missing and we, therefore, analyzed the effect of Staphylococcus aureus (SA) and Staphylococcus epidermidis (SE) planktonic and biofilm environments on osteoclastogenesis using RAW 264.7 cells and conditioned media (CM). RESULTS: Priming with the osteoclastogenic cytokine RANKL before CM addition enabled the cells to differentiate into osteoclasts. This effect was highest in SE planktonic or SA biofilm CM. Simultaneous stimulation with CM and RANKL, however, suppressed osteoclast formation and resulted in formation of inflammation-associated multinucleated giant cells (MGCs) which was most pronounced in SE planktonic CM. CONCLUSION: Our data indicate that the biofilm environment and its high lactate levels are not actively promoting osteoclastogenesis. Hence, the inflammatory immune response against planktonic bacterial factors through Toll-like receptors seems to be the central cause for the pathological osteoclast formation. Therefore, immune stimulation or approaches that aim at biofilm disruption need to consider that this might result in enhanced inflammation-mediated bone destruction.


Assuntos
Reabsorção Óssea , Osteoclastos , Humanos , Staphylococcus , Plâncton/fisiologia , Biofilmes , Staphylococcus aureus , Inflamação , Ligante RANK/farmacologia
5.
Inflammation ; 46(4): 1512-1530, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37212952

RESUMO

Biofilm formation is a leading cause for chronic implant-related bone infections as biofilms shield bacteria against the immune system and antibiotics. Additionally, biofilms generate a metabolic microenvironment that shifts the immune response towards tolerance. Here, we compared the impact of the metabolite profile of bacterial environments on macrophage immune activation using Staphylococcus aureus (SA) and epidermidis (SE) conditioned media (CM) of planktonic and biofilm cultures. The biofilm environment had reduced glucose and increased lactate concentrations. Moreover, the expression of typical immune activation markers on macrophages was reduced in the biofilm environment compared to the respective planktonic CM. However, all CM caused a predominantly pro-inflammatory macrophage cytokine response with a comparable induction of Tnfa expression. In biofilm CM, this was accompanied by higher levels of anti-inflammatory Il10. Planktonic CM, on the other hand, induced an IRF7 mediated Ifnb gene expression which was absent in the biofilm environments. For SA but not for SE planktonic CM, this was accompanied by IRF3 activation. Stimulation of macrophages with TLR-2/-9 ligands under varying metabolic conditions revealed that, like in the biofilm setting, low glucose concentration reduced the Tnfa to Il10 mRNA ratio. However, the addition of extracellular L-lactate but not D-lactate increased the Tnfa to Il10 mRNA ratio upon TLR-2/-9 stimulation. In summary, our data indicate that the mechanisms behind the activation of macrophages differ between planktonic and biofilm environments. These differences are independent of the metabolite profiles, suggesting that the production of different bacterial factors is ultimately more important than the concentrations of glucose and lactate in the environment.


Assuntos
Interleucina-10 , Infecções Estafilocócicas , Humanos , Plâncton/genética , Receptor 2 Toll-Like , Biofilmes , Staphylococcus aureus , Macrófagos , Lactatos
6.
Immunology ; 169(3): 309-322, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36732282

RESUMO

Interleukin (IL)-9 is an emerging player in the pathogenesis of various chronic inflammatory diseases including bone disorders like rheumatoid arthritis (RA) and psoriatic arthritis. Recently, IL-9 was shown to enhance the osteoclast formation and their function in RA. However, the mechanisms by which IL-9 influences osteoclastogenesis are not known. Therefore, in this study we aimed to unravel the direct and indirect ways by which IL-9 can influence osteoclast formation. We used mouse bone marrow precursor cells for checking the effect of IL-9 on osteoclast differentiation and its function. Next, IL-9 induced signalling pathway were checked in the process of osteoclastogenesis. T cells play an important role in enhancing osteoclastogenesis in inflammatory conditions. We used splenic T cells to understand the impact of IL-9 on the functions of T effector (Teff) and regulatory T (Treg) cells. Furthermore, the effect of IL-9 mediated modulation of the T cell response on osteoclasts was checked using a coculture model of T cells with osteoclast precursors. We showed that IL-9 enhanced osteoclast formation and its function. We found that IL-9 activates STAT3, P38 MAPK, ERK1/2, NFκB and we hypothesize that it mediates the effect on osteoclastogenesis by accelerating mitochondrial biogenesis. Additionally, IL-9 was observed to facilitate the functions of pro-osteoclastogenic IL-17 producing T cells, but inhibits the function of anti-osteoclastogenic Treg cells. Our observations suggest that IL-9 can influence osteoclastogenesis directly by modulating the signalling cascade in the precursor cells; indirectly by enhancing IL-17 producing T cells and by reducing the functions of Treg cells.


Assuntos
Artrite Reumatoide , Osteogênese , Camundongos , Animais , Interleucina-17/metabolismo , Interleucina-9/metabolismo , Osteoclastos , Transdução de Sinais , Artrite Reumatoide/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular , Células Cultivadas
7.
Explor Target Antitumor Ther ; 4(6): 1260-1285, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38213532

RESUMO

Cells need to adapt their activities to extra- and intracellular signalling cues. To translate a received extracellular signal, cells have specific receptors that transmit the signal to downstream proteins so that it can reach the nucleus to initiate or repress gene transcription. Post-translational modifications (PTMs) of proteins are reversible or irreversible chemical modifications that help to further modulate protein activity. The most commonly observed PTMs are the phosphorylation of serine, threonine, and tyrosine residues, followed by acetylation, glycosylation, and amidation. In addition to PTMs that involve the modification of a certain amino acid (phosphorylation, hydrophobic groups for membrane localisation, or chemical groups like acylation), or the conjugation of peptides (SUMOylation, NEDDylation), structural changes such as the formation of disulphide bridge, protein cleavage or splicing can also be classified as PTMs. Recently, it was discovered that metabolites from the tricarboxylic acid (TCA) cycle are not only intermediates that support cellular metabolism but can also modify lysine residues. This has been shown for acetate, succinate, and lactate, among others. Due to the importance of mitochondria for the overall fitness of organisms, the regulatory function of such PTMs is critical for protection from aging, neurodegeneration, or cardiovascular disease. Cancer cells and activated immune cells display a phenotype of accelerated metabolic activity known as the Warburg effect. This metabolic state is characterised by enhanced glycolysis, the use of the pentose phosphate pathway as well as a disruption of the TCA cycle, ultimately causing the accumulation of metabolites like citrate, succinate, and malate. Succinate can then serve as a signalling molecule by directly interacting with proteins, by binding to its G protein-coupled receptor 91 (GPR91) and by post-translationally modifying proteins through succinylation of lysine residues, respectively. This review is focus on the process of protein succinylation and its importance in health and disease.

8.
Int J Mol Sci ; 23(4)2022 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-35216127

RESUMO

The annual meeting "Signal Transduction-Receptors, Mediators and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference which is open to all scientists sharing a common interest in the elucidation of the signaling pathways mediating physiological or pathological processes in the health and disease of humans, animals, plants, fungi, prokaryotes, and protists. The 24th meeting on signal transduction was held from 15 to 17 November 2021 in Weimar, Germany. As usual, keynote presentations by invited scientists introduced the respective workshops, and were followed by speakers chosen from the submitted abstracts. A special workshop focused on "Target Identification and Interaction". Ample time was reserved for the discussion of the presented data during the workshops. Unfortunately, due to restrictions owing to the SARS-CoV-2 pandemic, the poster sessions-and thus intensive scientific discussions at the posters-were not possible. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.


Assuntos
Transdução de Sinais/fisiologia , Pesquisa Biomédica , Alemanha , Sociedades Científicas
9.
Biol Chem ; 403(2): 211-229, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34882360

RESUMO

Bone metabolism is essential for maintaining bone mineral density and bone strength through a balance between bone formation and bone resorption. Bone formation is associated with osteoblast activity whereas bone resorption is linked to osteoclast differentiation. Osteoblast progenitors give rise to the formation of mature osteoblasts whereas monocytes are the precursors for multi-nucleated osteoclasts. Chronic inflammation, auto-inflammation, hormonal changes or adiposity have the potential to disturb the balance between bone formation and bone loss. Several plant-derived components are described to modulate bone metabolism and alleviate osteoporosis by enhancing bone formation and inhibiting bone resorption. The plant-derived naphthoquinone plumbagin is a bioactive compound that can be isolated from the roots of the Plumbago genus. It has been used as traditional medicine for treating infectious diseases, rheumatoid arthritis and dermatological diseases. Reportedly, plumbagin exerts its biological activities primarily through induction of reactive oxygen species and triggers osteoblast-mediated bone formation. It is plausible that plumbagin's reciprocal actions - inhibiting or inducing death in osteoclasts but promoting survival or growth of osteoblasts - are a function of the synergy with bone-metabolizing hormones calcitonin, Parathormone and vitamin D. Herein, we develop a framework for plausible molecular modus operandi of plumbagin in bone metabolism.


Assuntos
Reabsorção Óssea , Naftoquinonas , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/metabolismo , Diferenciação Celular , Humanos , Inflamação/metabolismo , Naftoquinonas/metabolismo , Naftoquinonas/farmacologia , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Compostos Fitoquímicos/metabolismo
10.
Front Cell Infect Microbiol ; 12: 1016299, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36699722

RESUMO

Introduction: The bacterial protein toxin Pasteurella multocida toxin (PMT) mediates RANKL-independent osteoclast differentiation. Although these osteoclasts are smaller, their resorptive activity is high which helps in efficient destruction of nasal turbinate bones of pigs. Methods: The proteome of bone marrow-derived macrophages differentiated into osteoclasts with either RANKL or PMT was analysed. The results were verified by characterizing the metabolic activity using Seahorse analysis, a protein translation assay, immunoblots, real-time PCR as well as flow cytometry-based monitoring of mitochondrial activity and ROS production. A Gαq overexpression system using ER-Hoxb8 cells was used to identify Gαq-mediated metabolic effects on osteoclast differentiation and function. Results: PMT induces the upregulation of metabolic pathways, which included strong glycolytic activity, increased expression of GLUT1 and upregulation of the mTOR pathway. As OxPhos components were expressed more efficiently, cells also displayed increased mitochondrial respiration. The heterotrimeric G protein Gαq plays a central role in this hypermetabolic cell activation as it triggers mitochondrial relocalisation of pSerSTAT3 and an increase in OPA1 expression. This seems to be caused by a direct interaction between STAT3 and OPA1 resulting in enhanced mitochondrial respiration. Overexpression of Gαq mimicked the hypermetabolic phenotype observed for PMT-induced osteoclasts and resulted in higher glycolytic and mitochondrial activity as well as increased bone resorptive activity. In addition, rheumatoid arthritis (RA) patients showed an increase in GNAQ expression, especially in the synovial fluid. Discussion: Our study suggests that Gαq plays a key role in PMT-induced osteoclastogenesis. Enhanced expression of GNAQ at the site of inflammation in RA patients indicates its pathophysiological relevance in the context of inflammatory bone disorders.


Assuntos
Osteoclastos , Pasteurella multocida , Animais , Suínos , Osteoclastos/metabolismo , Macrófagos/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Ligação ao GTP/farmacologia , Diferenciação Celular/fisiologia , Metabolismo Energético , Ligante RANK/metabolismo
11.
Front Immunol ; 13: 1058905, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591313

RESUMO

The gram-negative, zoonotic bacterium Pasteurella multocida was discovered in 1880 and found to be the causative pathogen of fowl cholera. Pasteurella-related diseases can be found in domestic and wild life animals such as buffalo, sheep, goat, deer and antelope, cats, dogs and tigers and cause hemorrhagic septicemia in cattle, rhinitis or pneumonia in rabbits or fowl cholera in poultry and birds. Pasteurella multocida does not play a major role in the immune-competent human host, but can be found after animal bites or in people with close contact to animals. Toxigenic strains are most commonly found in pigs and express a phage-encoded 146 kDa protein, the Pasteurella multocida toxin (PMT). Toxin-expressing strains cause atrophic rhinitis where nasal turbinate bones are destroyed through the inhibition of bone building osteoblasts and the activation of bone resorbing osteoclasts. After its uptake through receptor-mediated endocytosis, PMT specifically targets the alpha subunit of several heterotrimeric G proteins and constitutively activates them through deamidation of a glutamine residue to glutamate in the alpha subunit. This results in cytoskeletal rearrangement, proliferation, differentiation and survival of cells. Because of the toxin's mitogenic effects, it was suggested that it might have carcinogenic properties, however, no link between Pasteurella infections and cell transformation could be established, neither in tissue culture models nor through epidemiological data. In the recent years it was shown that the toxin not only affects bone, but also the heart as well as basically all cells of innate and adaptive immunity. During the last decade the focus of research shifted from signal transduction processes to understanding how the bacteria might benefit from a bone-destroying toxin. The primary function of PMT seems to be the modulation of immune cell activation which at the same time creates an environment permissive for osteoclast formation. While the disease is restricted to pigs, the implications of the findings from PMT research can be used to explore human diseases and have a high translational potential. In this review our current knowledge will be summarized and it will be discussed what can be learned from using PMT as a tool to understand human pathologies.


Assuntos
Toxinas Bacterianas , Cólera , Cervos , Infecções por Pasteurella , Pasteurella multocida , Bovinos , Animais , Humanos , Ovinos , Suínos , Cães , Coelhos , Cervos/metabolismo , Toxinas Bacterianas/metabolismo , Infecções por Pasteurella/veterinária , Proliferação de Células
12.
J Med Chem ; 64(18): 13793-13806, 2021 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-34473502

RESUMO

The cysteine protease cathepsin K is a target for the treatment of diseases associated with high bone turnover. Cathepsin K is mainly expressed in osteoclasts and responsible for the destruction of the proteinaceous components of the bone matrix. We designed various fluorescent activity-based probes (ABPs) and their precursors that bind to and inactivate cathepsin K. ABP 25 exhibited extraordinary potency (kinac/Ki = 35,300 M-1s-1) and selectivity for human cathepsin K. Crystal structures of cathepsin K in complex with ABP 25 and its nonfluorescent precursor 21 were determined to characterize the binding mode of this new type of acrylamide-based Michael acceptor with the particular orientation of the dibenzylamine moiety to the primed subsite region. The cyanine-5 containing probe 25 allowed for sensitive detection of cathepsin K, selective visualization in complex proteomes, and live cell imaging of a human osteosarcoma cell line, underlining its applicability in a pathophysiological environment.


Assuntos
Acrilamidas/química , Catepsina K/antagonistas & inibidores , Inibidores de Cisteína Proteinase/química , Corantes Fluorescentes/química , Acrilamidas/síntese química , Acrilamidas/metabolismo , Domínio Catalítico , Catepsina K/química , Catepsina K/metabolismo , Linhagem Celular Tumoral , Inibidores de Cisteína Proteinase/síntese química , Inibidores de Cisteína Proteinase/metabolismo , Desenho de Fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/metabolismo , Humanos , Microscopia Confocal , Microscopia de Fluorescência , Ligação Proteica
13.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34204435

RESUMO

The central protein in the oncogenic circuitry is the Ras GTPase that has been under intense scrutiny for the last four decades. From its discovery as a viral oncogene and its non-oncogenic contribution to crucial cellular functioning, an elaborate genetic, structural, and functional map of Ras is being created for its therapeutic targeting. Despite decades of research, there still exist lacunae in our understanding of Ras. The complexity of the Ras functioning is further exemplified by the fact that the three canonical Ras genes encode for four protein isoforms (H-Ras, K-Ras4A, K-Ras4B, and N-Ras). Contrary to the initial assessment that the H-, K-, and N-Ras isoforms are functionally similar, emerging data are uncovering crucial differences between them. These Ras isoforms exhibit not only cell-type and context-dependent functions but also activator and effector specificities on activation by the same receptor. Preferential localization of H-, K-, and N-Ras in different microdomains of the plasma membrane and cellular organelles like Golgi, endoplasmic reticulum, mitochondria, and endosome adds a new dimension to isoform-specific signaling and diverse functions. Herein, we review isoform-specific properties of Ras GTPase and highlight the importance of considering these towards generating effective isoform-specific therapies in the future.


Assuntos
Proteínas Proto-Oncogênicas p21(ras)/genética , Biomarcadores , Biomarcadores Tumorais , Regulação da Expressão Gênica , Humanos , Mutação , Isoformas de Proteínas , Proteínas Proto-Oncogênicas p21(ras)/química , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Pesquisa , Transdução de Sinais , Relação Estrutura-Atividade , Pesquisa Translacional Biomédica , Proteínas ras/metabolismo
14.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803472

RESUMO

Plumbagin is a plant-derived naphthoquinone that is widely used in traditional Asian medicine due to its anti-inflammatory and anti-microbial properties. Additionally, plumbagin is cytotoxic for cancer cells due to its ability to trigger reactive oxygen species (ROS) formation and subsequent apoptosis. Since it was reported that plumbagin may inhibit the differentiation of bone resorbing osteoclasts in cancer-related models, we wanted to elucidate whether plumbagin interferes with cytokine-induced osteoclastogenesis. Using C57BL/6 mice, we unexpectedly found that plumbagin treatment enhanced osteoclast formation and that this effect was most pronounced when cells were pre-treated for 24 h with plumbagin before subsequent M-CSF/RANKL stimulation. Plumbagin caused a fast induction of NFATc1 signalling and mTOR-dependent activation of p70S6 kinase which resulted in the initiation of protein translation. In line with this finding, we observed an increase in RANK surface expression after Plumbagin stimulation that enhanced the responsiveness for subsequent RANKL treatment. However, in Balb/c mice and Balb/c-derived RAW264.7 macrophages, these findings could not be corroborated and osteoclastogenesis was inhibited. Our results suggest that the effects of plumbagin depend on the model system used and can therefore either trigger or inhibit osteoclast formation.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Naftoquinonas/farmacologia , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/metabolismo , Reabsorção Óssea/patologia , Fator Estimulador de Colônias de Macrófagos/metabolismo , Camundongos , Fatores de Transcrição NFATC/metabolismo , Osteoclastos/patologia , Ligante RANK/metabolismo , Células RAW 264.7 , Serina-Treonina Quinases TOR/metabolismo
15.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326408

RESUMO

The annual meeting "Signal Transduction-Receptors, Mediators and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating the signalling pathways underlying the physiological or pathological processes in health and disease of humans, animals, plants, fungi, prokaryotes and protists. The 23rd meeting on signal transduction was held from 4-6 November 2019 in Weimar, Germany, and focused on "Trends in Cancer and Infection". As usual, keynote presentations by invited scientists introduced the respective workshops and were followed by speakers chosen from the submitted abstracts. Ample time had been reserved for discussion of the presented data during the workshops. In this report, we provide a concise summary of the various workshops and further aspects of the scientific program.


Assuntos
Doenças Transmissíveis/imunologia , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Animais , Doenças Transmissíveis/metabolismo , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Alemanha , Humanos , Neoplasias/genética , Transdução de Sinais/imunologia
16.
Front Immunol ; 10: 1724, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396229

RESUMO

Chronic implant-related bone infections are a major problem in orthopedic and trauma-related surgery with severe consequences for the affected patients. As antibiotic resistance increases in general and because most antibiotics have poor effectiveness against biofilm-embedded bacteria in particular, there is a need for alternative and innovative treatment approaches. Recently, the immune system has moved into focus as the key player in infection defense and bone homeostasis, and the targeted modulation of the host response is becoming an emerging field of interest. The aim of this review was to summarize the current knowledge of impaired endogenous defense mechanisms that are unable to prevent chronicity of bone infections associated with a prosthetic or osteosynthetic device. The presence of foreign material adversely affects the immune system by generating a local immune-compromised environment where spontaneous clearance of planktonic bacteria does not take place. Furthermore, the surface structure of the implant facilitates the transition of bacteria from the planktonic to the biofilm stage. Biofilm formation on the implant surface is closely linked to the development of a chronic infection, and a misled adaption of the immune system makes it impossible to effectively eliminate biofilm infections. The interaction between the immune system and bone cells, especially osteoclasts, is extensively studied in the field of osteoimmunology and this crosstalk further aggravates the course of bone infection by shifting bone homeostasis in favor of bone resorption. T cells play a major role in various chronic diseases and in this review a special focus was therefore set on what is known about an ineffective T cell response. Myeloid-derived suppressor cells (MDSCs), anti-inflammatory macrophages, regulatory T cells (Tregs) as well as osteoclasts all suppress immune defense mechanisms and negatively regulate T cell-mediated immunity. Thus, these cells are considered to be potential targets for immune therapy. The success of immune checkpoint inhibition in cancer treatment encourages the transfer of such immunological approaches into treatment strategies of other chronic diseases. Here, we discuss whether immune modulation can be a therapeutic tool for the treatment of chronic implant-related bone infections.


Assuntos
Imunomodulação , Osteomielite/imunologia , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/imunologia , Animais , Biofilmes , Humanos , Imunoterapia/métodos , Osteomielite/terapia , Infecções Relacionadas à Prótese/microbiologia , Infecções Relacionadas à Prótese/terapia
17.
Int J Mol Sci ; 20(13)2019 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-31277491

RESUMO

During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.


Assuntos
Células/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos , Processamento de Proteína Pós-Traducional , Pesquisa Translacional Biomédica
18.
Int J Mol Sci ; 20(9)2019 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-31035677

RESUMO

Interleukin-9 (IL-9) is a pleiotropic cytokine and was primarily studied in the context of T helper 2 (TH2)-associated immuno-pathological conditions such as asthma and parasitic infections. There was a paradigm shift in the biology of IL-9 after the recent discovery of TH9 cells, a new subtype of TH cells which secrete IL-9 in copious amounts. This has resulted in renewed interest in this cytokine, which was neglected since discovery because it was considered it to be just another TH2 cytokine. Recent studies have shown that it has multiple cellular sources and is critically involved in the immune-pathogenesis of inflammatory diseases and in guarding immune tolerance. In this review, we will discuss its discovery, gene organization, cellular sources, and signaling pathways. Especially, we will give an update on the recent development regarding its relevance in the immune pathogenesis of human diseases.


Assuntos
Suscetibilidade a Doenças , Regulação da Expressão Gênica , Interleucina-9/genética , Interleucina-9/metabolismo , Receptores de Interleucina-9/metabolismo , Transdução de Sinais , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/metabolismo , Animais , Biomarcadores , Humanos , Tolerância Imunológica , Inflamação/etiologia , Inflamação/metabolismo
19.
Int J Mol Sci ; 20(1)2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30626122

RESUMO

The annual meeting "Signal Transduction-Receptors, Mediators, and Genes" of the Signal Transduction Society (STS) is an interdisciplinary conference open to all scientists sharing the common interest in elucidating signaling pathways in physiological or pathological processes in humans, animals, plants, fungi, prokaryotes, and protists. On the occasion of the 20th anniversary of the STS, the 22nd joint meeting took place in Weimar from 5⁻7 November 2018. With the focus topic "Signaling: From Past to Future" the evolution of the multifaceted research concerning signal transduction since foundation of the society was highlighted. Invited keynote speakers introduced the respective workshop topics and were followed by numerous speakers selected from the submitted abstracts. All presentations were lively discussed during the workshops. Here, we provide a concise summary of the various workshops and further aspects of the scientific program.


Assuntos
Transdução de Sinais , Animais , Morte Celular , Modelos Animais de Doenças , Humanos , Camundongos , Neoplasias/metabolismo , Neoplasias/patologia , Neurônios/metabolismo , Proteína Supressora de Tumor p53/metabolismo
20.
Cytokine ; 112: 102-115, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-29914791

RESUMO

Osteoclasts are specialised cells that resorb bone and develop from the monocyte/macrophage lineage. While there is a wealth of information on the regulation of macrophage function through metabolic activity, the connection between osteoclast differentiation and metabolism is less well understood. Recent data show that mitochondria participate in switching macrophages from an inflammatory phenotype towards differentiation into osteoclasts. Additionally, it was found that reactive oxygen species (ROS) actively take place in osteoclast differentiation by acting as secondary signalling molecules. Bone resorption is an energy demanding process and differentiating osteoclasts triggers the biogenesis of mitochondria. In addition, the activity of specific OXPHOS components of macrophages and osteoclasts is differentially regulated. This review summarises our knowledge on macrophage-mediated inflammation, its impact on a cell's metabolic activity and its effect on osteoclast differentiation.


Assuntos
Macrófagos/metabolismo , Osteoclastos/metabolismo , Animais , Reabsorção Óssea/metabolismo , Osso e Ossos/metabolismo , Diferenciação Celular/fisiologia , Humanos , Mitocôndrias/metabolismo , Monócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...