Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 276: 130028, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33690032

RESUMO

Alginate can be used for entrapment of microalgal cells in gel beads to achieve high-rate treatment of wastewater and can overcome the difficulties of cell separation that would occur in suspended microalgae treatment systems. The potential for alginate beads to disintegrate in the presence of high ion concentrations could limit the use of alginate entrapment for treating municipal wastewater reverse osmosis concentrate (ROC). The combined effect of the pH, alkalinity, and salinity of the ROC that impact the physical stability, chemical characteristics, biomass production, and nutrient removal performance of alginate-entrapped Chlorella vulgaris for treating the ROC was investigated. Water adsorption resulting from the loss of calcium from the alginate matrix was the initiating cause of reduction of the algal bead stability. The combination of alkalinity >400 mg/L and pH ≥9.5 led to a >65% reduction in compressive strength and thus disintegration of beads during ROC treatment. However, alginate beads of C. vulgaris were sufficiently stable and were capable of nutrient remediation (up to 100% TP and 85% TN per treatment cycle of 48 h over a 10-day period) and biomass production (up to 340 mg/L/d) when salinity, pH, and alkalinity levels were <8 g TDS/L, 7-9.5, and <400 mg/L, respectively. Empirical models that were developed and validated could enable the prediction of the performance of the algal beads for various ROC compositions. This study enhances the insight and decision-making regarding the feasibility of the alginate-immobilised microalgal system for treating municipal wastewater ROC streams.


Assuntos
Chlorella vulgaris , Microalgas , Alginatos , Biomassa , Osmose , Águas Residuárias
2.
Environ Technol ; 42(10): 1521-1530, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31560609

RESUMO

The use of microalgae for nutrients removal from wastewater has attracted more attention in recent years. More specifically, immobilized systems where algae cells are entrapped in beads in a matrix of a polysaccharide such as alginate have shown a great potential for nutrients removal from wastewater to low levels with reduced retention times and hence smaller footprint. However, a significant operational cost in the up-scaling of alginate-immobilized algae reactors will be the gelling agent alginate. To reduce expenditure of this consumable a proof-of-concept is given for an alginate recycling method using sodium citrate as a dissolving agent. Using algae beads made from virgin and recycled alginate yielded comparable removal rates for both phosphorus and nitrogen compounds from wastewater. At labscale, an alginate recovery of approximately 70% can be achieved which would result in a net operational cost reduction of about 60%.


Assuntos
Microalgas , Eliminação de Resíduos Líquidos , Alginatos , Nitrogênio , Fósforo , Águas Residuárias
3.
Environ Sci Pollut Res Int ; 27(21): 26905-26914, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32382902

RESUMO

Municipal wastewater reverse osmosis concentrate (ROC) poses health and environmental risks on its disposal as it contains nutrients and harmful organic compounds at elevated concentrations. This study compared a freshwater microalga Chlorella vulgaris and a marine microalga Nannochloropsis salina in suspended and alginate-immobilised cultures for batch and semi-continuous treatment of the ROC. The immobilised algae gave comparable nutrient removal rates to the suspended cells, demonstrating immobilisation had no apparent negative impact on the photosynthetic activity of microalgae. Semi-continuous algal treatment illustrated that the microalgae could remove significant amounts of nutrients (> 50% and > 80% for TN and TP, respectively), predominantly through algal uptake (> 90%), within a short period (48 h) and generate 335-360 mg DCW L-1 d-1 of algal biomass. The treatment also removed a significant amount of organic matter (12.7-13.3 mg DOC L-1 d-1), primarily (> 65%) through the biotic pathway.


Assuntos
Chlorella vulgaris , Microalgas , Biomassa , Filtração , Nitrogênio/análise , Nutrientes , Osmose , Eliminação de Resíduos Líquidos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...