Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473475

RESUMO

It is believed that the use of mortars based on air lime in the construction and renovation of brick buildings has a number of advantages, especially those closely related to the durability and strength of the structure. However, there is still a noticeable difference in the mechanical properties of these materials. This research investigated the mechanical characteristics of a mixed cement-lime mortar with the two most popular proportions of an air lime, cement, and sand mix: 1:1:6 and 1:2:9 (by volume). Mechanical tests were performed on standard and non-standard samples to assess compressive strength, tensile strength, flexural strength, and fracture energy. The obtained results indicate the possibility of using these mixtures in modern masonry construction, as well as in the aspect of sustainable development. Additionally, lime mortar with a higher lime content can be used in non-load-bearing walls and in renovation and repair works.

2.
Materials (Basel) ; 16(6)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36984051

RESUMO

In the present study, experimental investigations on the influence of mixing water content used for the preparation of mortar mix using factory-made dry-mix mortar dedicated to bricklaying with clinker masonry units are presented, as well as the curing time on flexural bond strength of masonry made of these two materials. The flexural bond strength was tested using the "wrench test" method. The masonry tests specimens were prepared using three volumes of mixing water as follows: 4.0 L (the value recommended by the mortar manufacturer); 4.5 L; and 5 L of tap water per one 25 kg bag of dry pre-mixed mortar. The influence of the mixing water content was analyzed in relation to curing time. All masonry specimens were tested in four series after 9, 14, 21, and 28 days of sample curing. The results showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected flexural bond strength. Moreover, for all three mixing water amounts, it was found that the maximum values of bonding strength were reached after 9 days of curing, which decreased over time. The largest decreases (30-40%) were recorded after 14 days. After 21 days, these values continued to decrease, but more slowly. The final value of the ratio of bond strength to flexural strength of the mortar was similar for all amounts of mixing water and for the 28-day curing time, it oscillated around 0.2.

3.
Materials (Basel) ; 15(1)2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-35009494

RESUMO

The article presents laboratory tests on the impact of the mixing water content used in the preparation of fresh mortar on the flexural and compressive strength of one of the dry-mix mortars produced by a leading European producer and dedicated to bricklaying with clinker elements. The development of these parameters in relation to curing time was also analyzed. The mortar samples were prepared from a factory-made mortar mix using 4.0 L (the value recommended by the mortar manufacturer), 4.5 L, and 5 L of water per 25 kg bag of ready-made, pre-mixed dry mortar mix. All samples were tested in five series after 5, 9, 14, 21, and 28 days of sample curing. The results of these tests showed that the use of 6 and 18% more mixing water than recommended by the manufacturer (4.5 and 5 L per bag) adversely affected the basic mechanical parameters of the tested mortar. Moreover, it was found that the highest compressive strength values were obtained after 21 days of curing and not after 28 days as usual. It was also found that hardening time and higher than recommended water content adversely affected the bending strength of the mortar.

4.
Materials (Basel) ; 14(19)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34640033

RESUMO

Prominence of concrete is characterized by its high mechanical properties and durability, combined with multifunctionality and aesthetic appeal. Development of alternative eco-friendly or multipurpose materials has conditioned improvements in concrete mix design to optimize concrete production speed and price, as well as carbon footprint. Artificial neural networks represent a new and efficient tool in achieving optimal concrete mixtures according to its intended function. This paper addresses concrete mix design and the application of artificial neural networks (ANNs) for self-sensing concrete. The authors review concrete mix design methods and the development of ANNs for prediction of properties for various types of concrete. Furthermore, the authors present developments and applications of ANNs for prediction of compressive strength and flexural strength of carbon nanotubes/carbon nanofibers (CNT/CNF) reinforced concrete using experimental results for the learning process. The goal is to bring the ANN approach closer to a variety of concrete researchers and possibly propose the implementation of ANNs in the civil engineering practice.

5.
Polymers (Basel) ; 13(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372129

RESUMO

This paper presents novel research on a fluidized bed combustion (FBC) fly ash-based geopolymer as a contribution to the problem of FBC fly ash disposal, and a proposal for a new geopolymer composition-an environmentally friendly material that is possible to use in construction. Geopolymer samples of various composition (containing FBC fly ash as the main raw material, metakaolin and CRT glass as additional components, and sodium silicate and sodium hydroxide as activators) were subjected to flexural and compressive strength tests. An investigation on the effect of the demolding time was carried out on one selected mixture. The test showed that both the composition and the demolding time have a decisive influence on the basic mechanical properties. A mixture containing FBC fly ash to metakaolin in a mass ratio of 3:1, removed from the mold after 14 days, was found to be the best in terms of the mechanical parameters expected from a material that could be used in construction, e.g., for the production of precast elements. According to the results obtained, FBC fly ash is a promising and environmentally friendly raw material for the production of geopolymer, with good mechanical properties and low density. Moreover, a high compressive strength can be obtained by curing the geopolymer at ambient temperature.

6.
Materials (Basel) ; 13(5)2020 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151031

RESUMO

This paper presents a discussion of the problem of compressive strength in a direction perpendicular to the grains based on test results of the joints made by timber posts and sill plate. These tests accompanied a larger series of full-scale tests of timber frame walls. The test elements were made of solid softwood (spruce). The wood moisture was low, which corresponds to the real working conditions of these elements in the walls of a building (low humidity is typical for dry wood in the built-in wall of a real building). In the tests, the compression strength of timber perpendicular to the grain was exceeded in the sill plate in the area in contact with the posts. Shortly before reaching the state of failure, large displacements in the sill plate were measured on the contact surface with the post, and the grains in the sill plates were cut off at the edge of the post. The full-scale test results showed an overestimation of the load-bearing capacity in compression perpendicular to the grain when calculated on the basis of EN 1995-1-1+A1:2008 (Eurocode 5), and, therefore, the need to modify the current approach for determining it.

7.
RSC Adv ; 10(39): 23038-23048, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35520311

RESUMO

Carbon nanotube/concrete composite possesses piezoresistivity i.e. self-sensing capability of concrete structures even in large scale. By incorporating smart materials in the structural health monitoring systems the issue of incompatibility between monitored structure and the sensor is surpassed since the concrete element fulfills both functions. Machine learning is an attractive tool to reduce model complexity, so artificial neural networks have been successfully used for a variety of applications including structural analysis and materials science. The idea of using smart materials can become more attractive by building a neural network able to predict properties of the specific nanomodified concrete, making it more cost-friendly and open for unexperienced engineers. This paper reviews previous research work which is exploring the properties of CNTs and their influence on concrete, and the use of artificial neural networks in concrete technology and structural health monitoring. Mix design of CNT/concrete composite materials combined with the application of precisely trained artificial neural networks represents a new direction in the evolution of structural health monitoring of concrete structures.

8.
Materials (Basel) ; 12(1)2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30609644

RESUMO

In typical technical applications, steel components are usually connected by welding or with mechanical connectors. An alternative solution, typical in the aviation and automotive industry, but not widespread in engineering structures, is to join thin sheet metal using adhesives. The article presents an experimental study of adhesive joints used in overlap connections subjected to static tension. A methacrylate adhesive, selected experimentally from a range of adhesives, which combines the optimum strength and strain properties, was tested. The laboratory tests were carried out on double-lap specimens made of high-strength Domex 700 steel. On the basis of the experimental results, the behavior of the specimens and their failure mechanism, depending on the anchorage lengths used (200, 300 and 400 mm), are described. The tests confirmed the effectiveness of the selected methacrylate adhesive in a practical application. It was shown that with the appropriate anchorage length (adequate to the type of steel components and the joint geometry) between 300 and 400 mm, the capacity of the adhesive joint is higher than the capacity of a single steel component. Two types of specimen behavior were recognized: Quasi-brittle, which occurs at the anchorage length of 200 mm, and ductile, observed for 300 mm and 400 mm anchoring. In addition, thanks to the optical measurement method used, a detailed strain distribution on the specimen surface was determined. The data will be used for subsequent validation of an analytical and numerical model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...