Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 329: 121672, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080511

RESUMO

We investigated physiological responses of Lemna minor plants and their capacity to remove tenofovir (TNF; 412 ng l-1), lamivudine (LMV; 5428 ng l-1) and/or efavirenz (EFV; 4000 ng l-1) from water through phytoremediation. In addition, the toxicological safety of water contaminated with these drugs after treatment with L. minor plants to photosynthetic microorganisms (Synechococcus elongatus and Chlorococcum infusionum) was evaluated. The tested environmental representative concentrations of drugs did not have a toxic effect on L. minor, and their tolerance mechanisms involved an increase in the activity of P450 and antioxidant enzymes (catalase and ascorbate peroxidase). L. minor accumulated significant quantities of TNF, LMV and EFV from the media (>70%), and the interactive effect of LMV and EFV increased EFV uptake by plants submitted to binary or tertiary mixture of drugs. Photosynthetic microorganisms exposed to TNF + LMV + EFV showed toxicological symptoms which were not observed when exposed to contaminated water previously treated with L. minor. An increased H2O2 concentrations but no oxidative damage in S. elongatus cells exposed to non-contaminated water treated with L. minor was observed. Due to its capacity to tolerate and reclaim anti-HIV drugs, L. minor plants must be considered in phytoremediation programs. They constitute a natural-based solution to decrease environmental contamination by anti-HIV drugs and toxicological effects of these pharmaceuticals to nontarget organisms.


Assuntos
Fármacos Anti-HIV , Araceae , Poluentes Químicos da Água , Fármacos Anti-HIV/farmacologia , Biodegradação Ambiental , Peróxido de Hidrogênio/farmacologia , Preparações Farmacêuticas , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 307(Pt 2): 135796, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35917978

RESUMO

We investigated the occurrence and risk assessment of three anti-HIV drugs [(tenofovir (TNF), lamivudine (LMV) and efavirenz (EFV)] in urban rivers from Curitiba (Brazil), as well as the individual and combined effects of their environmental representative concentrations on the freshwater periphytic species Synechococcus elongatus (Cyanobacteria) and Chlorococcum infusionum (Chlorophyta). The three studied drugs, except TNF, were found in 100% of the samples, and concentrations in samples ranged from 165 to 412 ng TNF L-1, 173-874 ng LMV L-1 and 13-1250 ng EFV L-1. Bioassays using artificial contaminated water showed that at environmental concentrations, TNF and LMV did not represent environmental risks to the studied photosynthetic organisms. However, EFV was shown to be toxic, affecting photosynthesis, respiration, and oxidative metabolism. The studied drugs demonstrated interactive effects. Indeed, when submitted to the combination of TNF and LMV, decreased photosynthesis was observed in C. infusionum cells. Moreover, the toxic effects of EFV were amplified in both species when TNF and/or LMV were added to the media. The simultaneous presence of TNF, LMV and EFV in environmental matrices associated with their interactive effects, lead to increased toxicological effects of water contaminated by anti-HIV drugs and thus to an ecological threat to photosynthetic microorganisms.


Assuntos
Fármacos Anti-HIV , Infecções por HIV , HIV-1 , Alcinos/farmacologia , Alcinos/uso terapêutico , Benzoxazinas , Ciclopropanos/farmacologia , Ciclopropanos/uso terapêutico , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Humanos , Lamivudina/farmacologia , Lamivudina/uso terapêutico , Fotossíntese , Tenofovir/farmacologia , Tenofovir/uso terapêutico , Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...