Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Rep ; 9(1): 10356, 2019 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346187

RESUMO

Increasingly large proportions of tropical forests are anthropogenically disturbed. Where natural regeneration is possible at all, it requires the input of plant seeds through seed dispersal from the forest matrix. Zoochorous seed dispersal - the major seed dispersal mode for woody plants in tropical forests - is particularly important for natural regeneration. In this study, covering a period of more than 20 years, we show that small New World primates, the tamarins Saguinus mystax and Leontocebus nigrifrons, increase their use of an anthropogenically disturbed area over time and disperse seeds from primary forest tree species into this area. Through monitoring the fate of seeds and through parentage analyses of seedlings of the legume Parkia panurensis from the disturbed area and candidate parents from the primary forest matrix, we show that tamarin seed dispersal is effective and contributes to the natural regeneration of the disturbed area.


Assuntos
Callitrichinae , Florestas , Dispersão de Sementes , Animais , Biodiversidade , Conservação dos Recursos Naturais , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Comportamento Alimentar , Humanos , Periodicidade , Estações do Ano , Plântula/genética , Plântula/crescimento & desenvolvimento , Clima Tropical
3.
Front Plant Sci ; 8: 602, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28469633

RESUMO

Low temperatures are crucial for the formation of the alpine treeline worldwide. Since soil temperature in the shade of tree canopies is lower than in open sites, it was assumed that self-shading may impair the trees' root growth performance. While experiments with tree saplings demonstrate root growth impairment at soil temperatures below 5-7°C, field studies exploring the soil temperature - root growth relationship at the treeline are missing. We recorded soil temperature and fine root abundance and dynamics in shaded and sun-exposed areas under canopies of isolated Pinus cembra trees at the alpine treeline. In contrast to the mentioned assumption, we found more fine root biomass and higher fine root growth in colder than in warmer soil areas. Moreover, colder areas showed higher fine root turnover and thus lower root lifespan than warmer places. We conclude that P. cembra balances enhanced fine root mortality in cold soils with higher fine root activity and by maintaining higher fine root biomass, most likely as a response to shortage in soil resource supply. The results from our study highlight the importance of in situ measurements on mature trees to understand the fine root response and carbon allocation pattern to the thermal growth conditions at the alpine treeline.

4.
Front Plant Sci ; 7: 1233, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27617016

RESUMO

Advancing our understanding of tree fine root dynamics is of high importance for tree physiology and forest biogeochemistry. In temperate broad-leaved forests, ectomycorrhizal (EM) and arbuscular mycorrhizal (AM) tree species often are coexisting. It is not known whether EM and AM trees differ systematically in fine root dynamics and belowground resource foraging strategies. We measured fine root productivity (FRP) and fine root turnover (and its inverse, root longevity) of three EM and three AM broad-leaved tree species in a natural cool-temperate mixed forest using ingrowth cores and combined the productivity data with data on root biomass per root orders. FRP and root turnover were related to root morphological traits and aboveground productivity. FRP differed up to twofold among the six coexisting species with larger species differences in lower horizons than in the topsoil. Root turnover varied up to fivefold among the species with lowest values in Acer pseudoplatanus and highest in its congener Acer platanoides. Variation in root turnover was larger within the two groups than between EM and AM species. We conclude that the main determinant of FRP and turnover in this mixed forest is species identity, while the influence of mycorrhiza type seems to be less important.

5.
Front Plant Sci ; 6: 64, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25717334

RESUMO

While most temperate broad-leaved tree species form ectomycorrhizal (EM) symbioses, a few species have arbuscular mycorrhizas (AM). It is not known whether EM and AM tree species differ systematically with respect to fine root morphology, fine root system size and root functioning. In a species-rich temperate mixed forest, we studied the fine root morphology and biomass of three EM and three AM tree species from the genera Acer, Carpinus, Fagus, Fraxinus, and Tilia searching for principal differences between EM and AM trees. We further assessed the evidence of convergence or divergence in root traits among the six co-occurring species. Eight fine root morphological and chemical traits were investigated in root segments of the first to fourth root order in three different soil depths and the relative importance of the factors root order, tree species and soil depth for root morphology was determined. Root order was more influential than tree species while soil depth had only a small effect on root morphology All six species showed similar decreases in specific root length and specific root area from the 1st to the 4th root order, while the species patterns differed considerably in root tissue density, root N concentration, and particularly with respect to root tip abundance. Most root morphological traits were not significantly different between EM and AM species (except for specific root area that was larger in AM species), indicating that mycorrhiza type is not a key factor influencing fine root morphology in these species. The order-based root analysis detected species differences more clearly than the simple analysis of bulked fine root mass. Despite convergence in important root traits among AM and EM species, even congeneric species may differ in certain fine root morphological traits. This suggests that, in general, species identity has a larger influence on fine root morphology than mycorrhiza type.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...