Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(18): 181401, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204900

RESUMO

By respecting the conformal symmetry of the dual conformal field theory, and treating the conformal factor of the Anti-de Sitter boundary as a thermodynamic parameter, we formulate the holographic first law that is exactly dual to the first law of extended black hole thermodynamics with variable cosmological constant but fixed Newton's constant.

2.
Phys Rev Lett ; 127(9): 091301, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34506158

RESUMO

We reconsider the thermodynamics of anti-de Sitter black holes in the context of gauge-gravity duality. In this new setting, where both the cosmological constant Λ and the gravitational Newton's constant G are varied in the bulk, we rewrite the first law in a new form containing both Λ (associated with thermodynamic pressure) and the central charge C of the dual conformal field theory and their conjugate variables. We obtain a novel thermodynamic volume, in turn leading to a new understanding of the Van der Waals behavior of charged anti-de Sitter black holes in which phase changes are governed by the degrees of freedom in the conformal field theory. Compared to the "old" P-V criticality, this new criticality is "universal" (independent of the bulk pressure) and directly relates to the thermodynamics of the dual field theory and its central charge.

3.
Phys Rev Lett ; 120(23): 231103, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29932711

RESUMO

We demonstrate the separability of the massive vector (Proca) field equation in general Kerr-NUT-AdS black-hole spacetimes in any number of dimensions, filling a long-standing gap in the literature. The obtained separated equations are studied in more detail for the four-dimensional Kerr geometry and the corresponding quasinormal modes are calculated. Two of the three independent polarizations of the Proca field are shown to emerge from the separation ansatz and the results are found in an excellent agreement with those of the recent numerical study where the full coupled partial differential equations were tackled without using the separability property.

4.
Living Rev Relativ ; 20(1): 6, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29213211

RESUMO

The study of higher-dimensional black holes is a subject which has recently attracted vast interest. Perhaps one of the most surprising discoveries is a realization that the properties of higher-dimensional black holes with the spherical horizon topology and described by the Kerr-NUT-(A)dS metrics are very similar to the properties of the well known four-dimensional Kerr metric. This remarkable result stems from the existence of a single object called the principal tensor. In our review we discuss explicit and hidden symmetries of higher-dimensional Kerr-NUT-(A)dS black hole spacetimes. We start with discussion of the Killing and Killing-Yano objects representing explicit and hidden symmetries. We demonstrate that the principal tensor can be used as a "seed object" which generates all these symmetries. It determines the form of the geometry, as well as guarantees its remarkable properties, such as special algebraic type of the spacetime, complete integrability of geodesic motion, and separability of the Hamilton-Jacobi, Klein-Gordon, and Dirac equations. The review also contains a discussion of different applications of the developed formalism and its possible generalizations.

5.
Phys Rev Lett ; 117(13): 131303, 2016 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-27715105

RESUMO

We address a long-standing problem of describing the thermodynamics of an accelerating black hole. We derive a standard first law of black hole thermodynamics, with the usual identification of entropy proportional to the area of the event horizon-even though the event horizon contains a conical singularity. This result not only extends the applicability of black hole thermodynamics to realms previously not anticipated, it also opens a possibility for studying novel properties of an important class of exact radiative solutions of Einstein equations describing accelerated objects. We discuss the thermodynamic volume, stability, and phase structure of these black holes.

6.
Phys Rev Lett ; 115(3): 031101, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230779

RESUMO

We construct a new class of rotating anti-de Sitter (AdS) black hole solutions with noncompact event horizons of finite area in any dimension and study their thermodynamics. In four dimensions these black holes are solutions to gauged supergravity. We find that their entropy exceeds the maximum implied from the conjectured reverse isoperimetric inequality, which states that for a given thermodynamic volume, the black hole entropy is maximized for Schwarzschild-AdS space. We use this result to suggest more stringent conditions under which this conjecture may hold.

7.
Phys Rev Lett ; 108(5): 051104, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22400922

RESUMO

We study the motion of a classical spinning particle (with spin degrees of freedom described by a vector of Grassmann variables) in higher-dimensional general rotating black hole spacetimes with a cosmological constant. In all dimensions n we exhibit n bosonic functionally independent integrals of spinning particle motion, corresponding to explicit and hidden symmetries generated from the principal conformal Killing-Yano tensor. Moreover, we demonstrate that in 4-, 5-, 6-, and 7-dimensional black hole spacetimes such integrals are in involution, proving the bosonic part of the motion integrable. We conjecture that the same conclusion remains valid in all higher dimensions. Our result generalizes the result of Page et al. [Phys. Rev. Lett. 98, 061102 (2007)] on complete integrability of geodesic motion in these spacetimes.

8.
Phys Rev Lett ; 98(1): 011101, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17358466

RESUMO

We demonstrate that the rotating black holes in an arbitrary number of dimensions and without any restrictions on their rotation parameters possess the same hidden symmetry as the four-dimensional Kerr metric. Namely, besides the spacetime symmetries generated by the Killing vectors they also admit the (antisymmetric) Killing-Yano and symmetric Killing tensors.

9.
Phys Rev Lett ; 98(6): 061102, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17358927

RESUMO

We explicitly exhibit n-1=[D/2]-1 constants of motion for geodesics in the general D-dimensional Kerr-NUT-AdS rotating black hole spacetime, arising from contractions of even powers of the 2-form obtained by contracting the geodesic velocity with the dual of the contraction of the velocity with the (D-2)-dimensional Killing-Yano tensor. These constants of motion are functionally independent of each other and of the D-n+1 constants of motion that arise from the metric and the D-n=[(D+1)/2] Killing vectors, making a total of D independent constants of motion in all dimensions D. The Poisson brackets of all pairs of these D constants are zero, so geodesic motion in these spacetimes is completely integrable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...