Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0042224, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916310

RESUMO

In our study, we aimed to explore the genomic and phenotypic traits of Priestia megaterium strain B1, which was isolated from root material of healthy apple plants, to adapt to the endophytic lifestyle and promote plant growth. We identified putative genes encoding proteins involved in chemotaxis, flagella biosynthesis, biofilm formation, secretory systems, detoxification, transporters, and transcription regulation. Furthermore, B1 exhibited both swarming and swimming motilities, along with biofilm formation. Both genomic and physiological analyses revealed the potential of B1 to promote plant growth through the production of indole-3-acetic acid and siderophores, as well as the solubilization of phosphate and zinc. To deduce potential genomic features associated with endophytism across members of P. megaterium strains, we conducted a comparative genomic analysis involving 27 and 31 genomes of strains recovered from plant and soil habitats, respectively, in addition to our strain B1. Our results indicated a closed pan genome and comparable genome size of strains from both habitats, suggesting a facultative host association and adaptive lifestyle to both habitats. Additionally, we performed a sparse Partial Least Squares Discriminant Analysis to infer the most discriminative functional features of the two habitats based on Pfam annotation. Despite the distinctive clustering of both groups, functional enrichment analysis revealed no significant enrichment of any Pfam domain in both habitats. Furthermore, when assessing genetic elements related to adaptation to endophytism in each individual strain, we observed their widespread presence among strains from both habitats. Moreover, all members displayed potential genetic elements for promoting plant growth.IMPORTANCEBoth genomic and phenotypic analyses yielded valuable insights into the capacity of P. megaterium B1 to adapt to the plant niche and enhance its growth. The comparative genomic analysis revealed that P. megaterium members, whether derived from soil or plant sources, possess the essential genetic machinery for interacting with plants and enhancing their growth. The conservation of these traits across various strains of this species extends its potential application as a bio-stimulant in diverse environments. This significance also applies to strain B1, particularly regarding its application to enhance the growth of plants facing apple replant disease conditions.

2.
Microorganisms ; 12(2)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38399658

RESUMO

Gnotobiotic murine models are important to understand microbiota-host interactions. Despite the role of bacteriophages as drivers for microbiome structure and function, there is no information about the structure and function of the gut virome in gnotobiotic models and the link between bacterial and bacteriophage/prophage diversity. We studied the virome of gnotobiotic murine Oligo-MM12 (12 bacterial species) and reduced Altered Schaedler Flora (ASF, three bacterial species). As reference, the virome of Specific Pathogen-Free (SPF) mice was investigated. A metagenomic approach was used to assess prophages and bacteriophages in the guts of 6-week-old female mice. We identified a positive correlation between bacteria diversity, and bacteriophages and prophages. Caudoviricetes (82.4%) were the most prominent class of phages in all samples with differing relative abundance. However, the host specificity of bacteriophages belonging to class Caudoviricetes differed depending on model bacterial diversity. We further studied the role of bacteriophages in horizontal gene transfer and microbial adaptation to the host's environment. Analysis of mobile genetic elements showed the contribution of bacteriophages to the adaptation of bacterial amino acid metabolism. Overall, our results implicate virome "dark matter" and interactions with the host system as factors for microbial community structure and function which determine host health. Taking the importance of the virome in the microbiome diversity and horizontal gene transfer, reductions in the virome might be an important factor driving losses of microbial biodiversity and the subsequent dysbiosis of the gut microbiome.

3.
Respir Res ; 24(1): 248, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845700

RESUMO

BACKGROUND: Microbiome dysbiosis can have long-lasting effects on our health and induce the development of various diseases. Bronchopulmonary dysplasia (BPD) is a multifactorial disease with pre- and postnatal origins including intra-amniotic infection as main risk factor. Recently, postnatal pathologic lung microbiota colonization was associated with BPD. The objectives of this prospective observational cohort study were to describe differences in bacterial signatures in the amniotic fluid (AF) of intact pregnancies without clinical signs or risk of preterm delivery and AF samples obtained during preterm deliveries and their variations between different BPD disease severity stages. METHODS: AF samples were collected under sterile conditions during fetal intervention from intact pregnancies (n = 17) or immediately before preterm delivery < 32 weeks (n = 126). Metabarcoding based approaches were used for the molecular assessment of bacterial 16S rRNA genes to describe bacterial community structure. RESULTS: The absolute amount of 16S rRNA genes was significantly increased in AF of preterm deliveries and detailed profiling revealed a reduced alpha diversity and a significant change in beta diversity with a reduced relative abundance of 16S rRNA genes indicative for Lactobacillus and Acetobacter while Fusobacterium, Pseudomonas, Ureaplasma and Staphylococcus 16S rRNA gene prevailed. Although classification of BPD by disease severity revealed equivalent absolute 16S rRNA gene abundance and alpha and beta diversity in no, mild and moderate/severe BPD groups, for some 16S rRNA genes differences were observed in AF samples. Bacterial signatures of infants with moderate/severe BPD showed predominance of 16S rRNA genes belonging to the Escherichia-Shigella cluster while Ureaplasma and Enterococcus species were enriched in AF samples of infants with mild BPD. CONCLUSIONS: Our study identified distinct and diverse intrauterine 16S rRNA gene patterns in preterm infants immediately before birth, differing from the 16S rRNA gene signature of intact pregnancies. The distinct 16S rRNA gene signatures at birth derive from bacteria with varying pathogenicity to the immature lung and are suited to identify preterm infants at risk. Our results emphasize the prenatal impact to the origins of BPD.


Assuntos
Displasia Broncopulmonar , Nascimento Prematuro , Lactente , Gravidez , Feminino , Recém-Nascido , Humanos , Nascimento Prematuro/diagnóstico , Recém-Nascido Prematuro , Displasia Broncopulmonar/diagnóstico , Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/genética , Líquido Amniótico , RNA Ribossômico 16S/genética , Estudos Prospectivos , Bactérias/genética
4.
Environ Microbiol ; 25(12): 3035-3051, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37655671

RESUMO

Plasmids are important vehicles for the dissemination of antibiotic resistance genes (ARGs) among bacteria by conjugation. Here, we determined the complete nucleotide sequences of nine different plasmids previously obtained by exogenous plasmid isolation from river and creek sediments and wastewater from a pharmaceutical company. We identified six IncP/P-1ε plasmids and single members of IncL, IncN and IncFII-like plasmids. Genetic structures of the accessory regions of the IncP/P-1ε plasmids obtained implied that multiple insertions and deletions had occurred, mediated by different transposons and Class 1 integrons with various ARGs. Our study provides compelling evidence that Class 1 integrons, Tn402-like transposons, Tn3-like transposons and/or IS26 played important roles in the acquisition of ARGs across all investigated plasmids. Our plasmid sequencing data provide new insights into how these mobile genetic elements could mediate the acquisition and spread of ARGs in environmental bacteria.


Assuntos
Poluentes Ambientais , Integrons , Antibacterianos/farmacologia , Bactérias/genética , Elementos de DNA Transponíveis/genética , Resistência a Múltiplos Medicamentos , Integrons/genética , Plasmídeos/genética , Indústria Farmacêutica
6.
New Phytol ; 240(5): 2020-2034, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37700504

RESUMO

Agriculture is a major source of nutrient pollution, posing a threat to the earth system functioning. Factors determining the nutrient use efficiency of plant-soil systems need to be identified to develop strategies to reduce nutrient losses while ensuring crop productivity. The potential of soil biota to tighten nutrient cycles by improving plant nutrition and reducing soil nutrient losses is still poorly understood. We manipulated soil biota communities in outdoor lysimeters, planted maize, continuously collected leachates, and measured N2 O- and N2 -gas emissions after a fertilization pulse to test whether differences in soil biota communities affected nutrient recycling and N losses. Lysimeters with strongly simplified soil biota communities showed reduced crop N (-20%) and P (-58%) uptake, strongly increased N leaching losses (+65%), and gaseous emissions (+97%) of N2 O and N2 . Soil metagenomic analyses revealed differences in the abundance of genes responsible for nutrient uptake, nitrate reduction, and denitrification that helped explain the observed nutrient losses. Soil biota are major drivers of nutrient cycling and reductions in the diversity or abundance of certain groups (e.g. through land-use intensification) can disrupt nutrient cycling, reduce agricultural productivity and nutrient use efficiency, and exacerbate environmental pollution and global warming.


Assuntos
Nitrogênio , Solo , Nitrogênio/análise , Agricultura , Gases , Biota , Nutrientes , Óxido Nitroso , Fertilizantes
7.
Front Microbiol ; 14: 1169958, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37520365

RESUMO

Introduction: Biological soil crusts (biocrusts) are known as biological hotspots on undisturbed, nutrient-poor bare soil surfaces and until now, are mostly observed in (semi-) arid regions but are currently poorly understood in agricultural systems. This is a crucial knowledge gap because managed sites of mesic regions can quickly cover large areas. Thus, we addressed the questions (i) if biocrusts from agricultural sites of mesic regions also increase nutrients and microbial biomass as their (semi-) arid counterparts, and (ii) how microbial community assemblage in those biocrusts is influenced by disturbances like different fertilization and tillage regimes. Methods: We compared phototrophic biomass, nutrient concentrations as well as the abundance, diversity and co-occurrence of Archaea, Bacteria, and Fungi in biocrusts and bare soils at a site with low agricultural soil quality. Results and Discussion: Biocrusts built up significant quantities of phototrophic and microbial biomass and stored more nutrients compared to bare soils independent of the fertilizer applied and the tillage management. Surprisingly, particularly low abundant Actinobacteria were highly connected in the networks of biocrusts. In contrast, Cyanobacteria were rarely connected, which indicates reduced importance within the microbial community of the biocrusts. However, in bare soil networks, Cyanobacteria were the most connected bacterial group and, hence, might play a role in early biocrust formation due to their ability to, e.g., fix nitrogen and thus induce hotspot-like properties. The microbial community composition differed and network complexity was reduced by conventional tillage. Mineral and organic fertilizers led to networks that are more complex with a higher percentage of positive correlations favoring microbe-microbe interactions. Our study demonstrates that biocrusts represent a microbial hotspot on soil surfaces under agricultural use, which may have important implications for sustainable management of such soils in the future.

8.
Microbiome ; 11(1): 162, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37496039

RESUMO

BACKGROUND: Darier's disease (DD) is a genodermatosis caused by mutations of the ATP2A2 gene leading to disrupted keratinocyte adhesion. Recurrent episodes of skin inflammation and infections with a typical malodour in DD indicate a role for microbial dysbiosis. Here, for the first time, we investigated the DD skin microbiome using a metabarcoding approach of 115 skin swabs from 14 patients and 14 healthy volunteers. Furthermore, we analyzed its changes in the context of DD malodour and the cutaneous DD transcriptome. RESULTS: We identified a disease-specific cutaneous microbiome with a loss of microbial diversity and of potentially beneficial commensals. Expansion of inflammation-associated microbes such as Staphylococcus aureus and Staphylococcus warneri strongly correlated with disease severity. DD dysbiosis was further characterized by abundant species belonging to Corynebacteria, Staphylococci and Streptococci groups displaying strong associations with malodour intensity. Transcriptome analyses showed marked upregulation of epidermal repair, inflammatory and immune defence pathways reflecting epithelial and immune response mechanisms to DD dysbiotic microbiome. In contrast, barrier genes including claudin-4 and cadherin-4 were downregulated. CONCLUSIONS: These findings allow a better understanding of Darier exacerbations, highlighting the role of cutaneous dysbiosis in DD inflammation and associated malodour. Our data also suggest potential biomarkers and targets of intervention for DD. Video Abstract.


Assuntos
Doença de Darier , Humanos , Doença de Darier/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Disbiose , Pele , Inflamação
9.
Environ Microbiome ; 18(1): 55, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37370177

RESUMO

BACKGROUND: The fruit fly Drosophila melanogaster lives in natural habitats and has also long been used as a model organism in biological research. In this study, we used a molecular barcoding approach to analyse the airways microbiome of larvae of D. melanogaster, which were obtained from eggs of flies of the laboratory strain w1118 and from immune deficient flies (NF-kB-K), and from wild-caught flies. To assess intergenerational transmission of microbes, all eggs were incubated under the same semi-sterile conditions. RESULTS: The airway microbiome of larvae from both lab-strains was dominated by the two families Acetobacteraceae and Lactobacillaceae, while larvae from wild-caught flies were dominated by Lactobacillaceae, Anaplasmataceae and Leuconostocaceae. Barcodes linked to Anaplasmataceae could be further assigned to Wolbachia sp., which is a widespread intracellular pathogen in arthropods. For Leuconostoceae, the most abundant reads were assigned to Weissella sp. Both Wolbachia and Weissella affect the development of the insects. Finally, a relative high abundance of Serratia sp. was found in larvae from immune deficient relish-/- compared to w1118 and wild-caught fly airways. CONCLUSIONS: Our results show for the first time that larvae from D. melanogaster harbor an airway microbiome, which is of low complexity and strongly influenced by the environmental conditions and to a lesser extent by the immune status. Furthermore, our data indicate an intergenerational transmission of the microbiome as shaped by the environment.

10.
Microbiol Resour Announc ; 12(6): e0117222, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37199619

RESUMO

Over the past years, a number of important traits supporting plant growth have been shown for different strains of Priestia megaterium (formerly known as Bacillus megaterium). Here, we report the draft genome sequence of the endophytic bacterial strain Priestia megaterium B1, which was isolated from surface-sterilized roots of apple plants.

11.
Sci Total Environ ; 892: 164260, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37209727

RESUMO

Insufficiently treated reclaimed water can act as a source of contamination by introducing recalcitrant contaminants (e.g., pharmaceutical compounds) to various water bodies and/or agricultural soils after irrigation. Tramadol (TRD) is one of these pharmaceuticals that can be detected in influents and effluents of wastewater treatment plants, at discharge points as well as in surface waters in Europe. While the uptake of TRD by plants through irrigation water has been shown, plant responses towards this compound are still unclear. Therefore, this study aims to evaluate the effects of TRD on selected plant enzymes as well as on the root bacterial community structure. A hydroponic experiment was conducted to test the effects of TRD (100 µg L-1 TRD) on barley plants, at two harvesting time points after treatment. Accumulation of TRD in root tissues over time was observed reaching concentrations of 111.74 and 138.39 µg g-1 in total root FW after 12 and 24 days of exposure, respectively. Furthermore, noticeable inductions in guaiacol peroxidase (5.47-fold), catalase (1.83-fold) and glutathione S-transferase (3.23- and 2.09-fold) were recorded in roots of TRD-treated plants compared to controls after 24 days. A significant alteration in the beta diversity of root-associated bacteria due to TRD treatment was observed. Three amplicon sequence variants assigned to Hydrogenophaga, U. Xanthobacteraceae and Pseudacidovorax were differentially abundant in TRD-treated compared to control plants at both harvesting time points. This study reveals the resilience of plants through the induction of the antioxidative system and changes in the root-associated bacterial community to cope with the TRD metabolization/detoxification process.


Assuntos
Hordeum , Tramadol , Antioxidantes , Água , Europa (Continente) , Raízes de Plantas
12.
Front Microbiol ; 13: 923515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875540

RESUMO

Pseudomonas sp. SCA7, characterized in this study, was isolated from roots of the bread wheat Triticum aestivum. Sequencing and annotation of the complete SCA7 genome revealed that it represents a potential new Pseudomonas sp. with a remarkable repertoire of plant beneficial functions. In vitro and in planta experiments with the reference dicot plant A. thaliana and the original monocot host T. aestivum were conducted to identify the functional properties of SCA7. The isolate was able to colonize roots, modify root architecture, and promote growth in A. thaliana. Moreover, the isolate increased plant fresh weight in T. aestivum under unchallenged conditions. Gene expression analysis of SCA7-inoculated A. thaliana indicated a role of SCA7 in nutrient uptake and priming of plants. Moreover, confrontational assays of SCA7 with fungal and bacterial plant pathogens revealed growth restriction of the pathogens by SCA7 in direct as well as indirect contact. The latter indicated involvement of microbial volatile organic compounds (mVOCs) in this interaction. Gas chromatography-mass spectrometry (GC-MS) analyses revealed 1-undecene as the major mVOC, and octanal and 1,4-undecadiene as minor abundant compounds in the emission pattern of SCA7. Additionally, SCA7 enhanced resistance of A. thaliana against infection with the plant pathogen Pseudomonas syringae pv. tomato DC3000. In line with these results, SA- and JA/ET-related gene expression in A. thaliana during infection with Pst DC3000 was upregulated upon treatment with SCA7, indicating the ability of SCA7 to induce systemic resistance. The thorough characterization of the novel Pseudomonas sp. SCA7 showed a remarkable genomic and functional potential of plant beneficial traits, rendering it a promising candidate for application as a biocontrol or a biostimulation agent.

13.
Front Microbiol ; 13: 841558, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401446

RESUMO

Apple replant disease (ARD) is a worldwide problem for tree nurseries and orchards leading to reduced plant growth and fruit quality. The etiology of this complex phenomenon is poorly understood, but shifts of the bulk soil and rhizosphere microbiome seem to play an important role. Since roots are colonized by microbes from the rhizosphere, studies of the endophytic microbiome in relation to ARD are meaningful. In this study, culture-independent and culture-dependent approaches were used in order to unravel the endophytic root microbiome of apple plants 3, 7, and 12 months after planting in ARD-affected soil and ARD-unaffected control soil at two different field sites. Next to a high diversity of Pseudomonas in roots from all soils, molecular barcoding approaches revealed an increase in relative abundance of endophytic Actinobacteria over time in plants grown in ARD and control plots. Furthermore, several amplicon sequence variants (ASVs) linked to Streptomyces, which had been shown in a previous greenhouse ARD biotest to be negatively correlated to shoot length and fresh mass, were also detected in roots from both field sites. Especially in roots of apple plants from control soil, these Streptomyces ASVs increased in their relative abundance over time. The isolation of 150 bacterial strains in the culture-dependent approach revealed a high diversity of members of the genus Pseudomonas, confirming the data of the molecular barcoding approach. However, only partial overlaps were found between the two approaches, underlining the importance of combining these methods in order to better understand this complex disease and develop possible countermeasures. Overall, this study suggests a key role of Streptomyces in the etiology of ARD in the field.

14.
FEMS Microbiol Ecol ; 98(5)2022 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-35416241

RESUMO

Cable bacteria (CB) perform electrogenic sulfur oxidation (e-SOx) by spatially separating redox half reactions over centimetre distances. For freshwater systems, the ecology of CB is not yet well understood, partly because they proved difficult to cultivate. This study introduces a new 'agar pillar' approach to selectively enrich and investigate CB populations. Within sediment columns, a central agar pillar is embedded, providing a sediment-free gradient system in equilibrium with the surrounding sediment. We incubated freshwater sediments from a streambed, a sulfidic lake and a hydrocarbon-polluted aquifer in such agar pillar columns. Microprofiling revealed typical patterns of e-SOx, such as the development of a suboxic zone and the establishment of electric potentials. The bacterial communities in the sediments and agar pillars were analysed over depth by PacBio near-full-length 16S rRNA gene amplicon sequencing, allowing for a precise phylogenetic placement of taxa detected. The selective niche of the agar pillar was preferentially colonized by CB related to Candidatus Electronema for surface water sediments, including several potentially novel species, but not for putative groundwater CB affiliated with Desulfurivibrio spp. The presence of CB was seemingly linked to co-enriched fermenters, hinting at a possible role of e-SOx populations as an electron sink for heterotrophic microbes. These findings add to our current understanding of the diversity and ecology of CB in freshwater systems, and to a discrimination of CB from surface and groundwater sediments. The agar pillar approach provides a new strategy that may facilitate the cultivation of redox gradient-dependent microorganisms, including previously unrecognized CB populations.


Assuntos
Elétrons , Sedimentos Geológicos , Ágar , Bactérias/genética , Sedimentos Geológicos/microbiologia , Lagos , Oxirredução , Filogenia , RNA Ribossômico 16S/genética
15.
Microbiol Resour Announc ; 11(4): e0020722, 2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35377163

RESUMO

We report the complete genome sequence of the phosphate-solubilizing bacterium Psychrobacillus sp. strain INOP01, isolated from an agricultural field in Rostock, Germany. In addition to its phosphate-solubilizing ability, the genome contains genes coding for proteins involved in phosphate (P) acquisition from various sources.

16.
Environ Microbiol ; 24(4): 1887-1901, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35106904

RESUMO

Stimulating litho-autotrophic denitrification in aquifers with hydrogen is a promising strategy to remove excess NO3 - , but it often entails accumulation of the cytotoxic intermediate NO2 - and the greenhouse gas N2 O. To explore if these high NO2 - and N2 O concentrations are caused by differences in the genomic composition, the regulation of gene transcription or the kinetics of the reductases involved, we isolated hydrogenotrophic denitrifiers from a polluted aquifer, performed whole-genome sequencing and investigated their phenotypes. We therefore assessed the kinetics of NO2 - , NO, N2 O, N2 and O2 as they depleted O2 and transitioned to denitrification with NO3 - as the only electron acceptor and hydrogen as the electron donor. Isolates with a complete denitrification pathway, although differing intermediate accumulation, were closely related to Dechloromonas denitrificans, Ferribacterium limneticum or Hydrogenophaga taeniospiralis. High NO2 - accumulation was associated with the reductases' kinetics. While available, electrons only flowed towards NO3 - in the narG-containing H. taeniospiralis but flowed concurrently to all denitrification intermediates in the napA-containing D. denitrificans and F. limneticum. The denitrification regulator RegAB, present in the napA strains, may further secure low intermediate accumulation. High N2 O accumulation only occurred during the transition to denitrification and is thus likely caused by delayed N2 O reductase expression.


Assuntos
Desnitrificação , Nitratos , Hidrogênio/metabolismo , Nitratos/metabolismo , Dióxido de Nitrogênio , Oxirredutases/genética , Oxirredutases/metabolismo , Fenótipo
17.
Microbiol Resour Announc ; 11(1): e0102021, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35023770

RESUMO

Hydrogenotrophic denitrifiers are important bacteria for nitrate removal in wastewater and aquifers. Here, we report the complete genome sequences of three hydrogenotrophic denitrifiers, namely, Dechloromonas denitrificans strain D110, Ferribacterium limneticum strain F76, and Hydrogenophaga taeniospiralis strain H3, all of which were isolated from a nitrate-polluted aquifer in Bavaria (Germany).

18.
Microbiol Resour Announc ; 10(24): e0015921, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34137630

RESUMO

Members of the genus Rhodococcus are usually able to catalyze a number of processes, which are of great interest for ecosystem performance as well as biotechnology. Here, we report the complete genome sequences of two Rhodococcus strains that were isolated from rhizosphere soil from an apple orchard in northern Germany.

19.
Microbiome ; 9(1): 123, 2021 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-34039428

RESUMO

BACKGROUND: The identification of microbiota based on next-generation sequencing (NGS) of extracted DNA has drastically improved our understanding of the role of microbial communities in health and disease. However, DNA-based microbiome analysis cannot per se differentiate between living and dead microorganisms. In environments such as the skin, host defense mechanisms including antimicrobial peptides and low cutaneous pH result in a high microbial turnover, likely resulting in high numbers of dead cells present and releasing substantial amounts of microbial DNA. NGS analyses may thus lead to inaccurate estimations of microbiome structures and consequently functional capacities. RESULTS: We investigated in this study the feasibility of a Benzonase-based approach (BDA) to pre-digest unprotected DNA, i.e., of dead microbial cells, as a method to overcome these limitations, thus offering a more accurate assessment of the living microbiome. A skin mock community as well as skin microbiome samples were analyzed using 16S rRNA gene sequencing and metagenomics sequencing after DNA extraction with and without a Benzonase digest to assess bacterial diversity patterns. The BDA method resulted in less reads from dead bacteria both in the skin mock community and skin swabs spiked with either heat-inactivated bacteria or bacterial-free DNA. This approach also efficiently depleted host DNA reads in samples with high human-to-microbial DNA ratios, with no obvious impact on the microbiome profile. We further observed that low biomass samples generate an α-diversity bias when the bacterial load is lower than 105 CFU and that Benzonase digest is not sufficient to overcome this bias. CONCLUSIONS: The BDA approach enables both a better assessment of the living microbiota and depletion of host DNA reads. Video abstract.


Assuntos
Bactérias , Metagenômica , Microbiota , Pele/microbiologia , Bactérias/genética , DNA/genética , DNA Bacteriano/genética , Endodesoxirribonucleases , Endorribonucleases , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , RNA Ribossômico 16S/genética
20.
Artigo em Inglês | MEDLINE | ID: mdl-34016249

RESUMO

A novel strain was isolated from grassland soil that has the potential to assimilate ammonium by the reduction of nitrate in the presence of oxygen. Whole genome sequence analysis revealed the presence of an assimilatory cytoplasmic nitrate reductase gene nasA and the assimilatory nitrite reductase genes nirBD which are involved in the sequential reduction of nitrate to nitrite and further to ammonium, respectively. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the isolate represents a member of the genus Pseudomonas. The closest phylogenetic neighbours based on 16S rRNA gene sequence analysis are the type strains of Pseudomonas peli (98.17%) and Pseudomonas guineae (98.03%). In contrast, phylogenomic analysis revealed a close relationship to Pseudomonas alcaligenes. Computation of the average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) with the closest phylogenetic neighbours of S1-A32-2T revealed genetic differences at the species level, which were further substantiated by differences in several physiological characteristics. On the basis of these results, it was concluded that the soil isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas campi sp. nov. (type strain S1-A32-2T=LMG 31521T=DSM 110222T) is proposed.


Assuntos
Pradaria , Filogenia , Pseudomonas/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Alemanha , Nitratos/metabolismo , Hibridização de Ácido Nucleico , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...