Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(12): 8194-8200, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32468821

RESUMO

Metallic Li deposited on the anode is known to induce short circuiting and degradation of the charge capacity of Li-ion batteries. However, no reliable technique is currently available to observe such Li metal without removing the case of the battery. An elemental analysis using muonic X-rays is proposed here because of its unique properties of nondestructive measurement, high sensitivity to light elements, and depth resolution. We demonstrated that this technique can be applied to detection of Li deposited on the surface of an anode containing Li ions, using a fully charged anode with Li deposited due to overcharge in an Al-laminated plastic pouch. The basis for the detection method is the difference in the atomic Coulomb capture ratio of the negative muons between the Li metal and ions. We have found, as a result, that the intensity of the muonic X-rays from metallic Li was approximately 50 times higher than that from Li ions. Consequently, the Li metal on the anode was clearly distinguishable from the intercalated Li ions in the anode. Furthermore, measurements of two overcharged anodes with 1.3 and 2.7 mg of metallic Li deposition, respectively, indicated that this technique is suitable for quantitative analysis. Distribution analysis is also possible, as shown by a preliminary observation on an overcharged anode from the back side. Therefore, this technique offers a new approach to the analysis of Li deposited on the anode of a Li-ion pouch battery.

2.
Anal Chem ; 87(9): 4597-600, 2015 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-25901421

RESUMO

Elemental analysis of materials is fundamentally important to science and technology. Many elemental analysis methods have been developed, but three-dimensional nondestructive elemental analysis of bulk materials has remained elusive. Recently, our project team, dreamX (damageless and regioselective elemental analysis with muonic X-rays), developed a nondestructive depth-profiling elemental analysis method after a decade of research. This new method utilizes a new type of probe; a negative muon particle and high-energy muonic X-rays emitted after the muon stops in a material. We performed elemental depth profiling on an old Japanese gold coin (Tempo-Koban) using a low-momentum negative muon beam and successfully determined that the Au concentration in the coin gradually decreased with depth over a micrometer length scale. We believe that this method will be a promising tool for the elemental analysis of valuable samples, such as archeological artifacts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...