Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771316

RESUMO

Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.


Assuntos
Proteínas de Bactérias , Legionella pneumophila , Vacúolos , Proteínas rab de Ligação ao GTP , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Legionella pneumophila/metabolismo , Legionella pneumophila/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos , Vacúolos/metabolismo , Vacúolos/microbiologia , Interações Hospedeiro-Patógeno , Ubiquitinação , Animais , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética
2.
mBio ; : e0247423, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032214

RESUMO

Mobile genetic elements such as conjugative plasmids play a key role in the acquisition of antibiotic resistance by pathogenic bacteria. Resistance genes on plasmids can be transferred between bacteria using specialized conjugation machinery. Acinetobacter baumannii, the most common bacterium associated with nosocomial infections, harbors a large conjugative plasmid that encodes a type IV secretion system (T4SS). Feng et al. recently found that the A. baumannii T4SS is specialized for plasmid transfer, suggesting that it may be involved in multidrug resistance (Z. Feng, L. Wang, Q. Guan, X. Chu, and Z.-Q. Luo, mBio e02276-23, 2023, https://doi.org/10.1128/mbio.02276-23), T4SS-encoding genes are shown to be controlled by a versatile GacA/S two-component regulatory system. GacA/S is also found to regulate genes involved in central metabolism. The coordinated regulation of metabolism and plasmid conjugation may be a bacterial strategy for adapting to selective pressure from antibiotics.

3.
FEBS J ; 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36636866

RESUMO

The extensive cellular signalling events controlled by posttranslational ubiquitination are tightly regulated through the action of specialized proteases termed deubiquitinases. Among them, the OTU family of deubiquitinases can play very specialized roles in the regulation of discrete subtypes of ubiquitin signals that control specific cellular functions. To exert control over host cellular functions, some pathogenic bacteria have usurped the OTU deubiquitinase fold as a secreted virulence factor that interferes with ubiquitination inside infected cells. Herein, we provide a review of the function of bacterial OTU deubiquitinases during infection, the structural basis for their deubiquitinase activities and the bioinformatic approaches leading to their identification. Understanding bacterial OTU deubiquitinases holds the potential for discoveries not only in bacterial pathogenesis but in eukaryotic biology as well.

4.
Mol Cell ; 83(1): 105-120.e5, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36538933

RESUMO

The versatility of ubiquitination to control vast domains of eukaryotic biology is due, in part, to diversification through differently linked poly-ubiquitin chains. Deciphering signaling roles for some chain types, including those linked via K6, has been stymied by a lack of specificity among the implicated regulatory proteins. Forged through strong evolutionary pressures, pathogenic bacteria have evolved intricate mechanisms to regulate host ubiquitin during infection. Herein, we identify and characterize a deubiquitinase domain of the secreted effector LotA from Legionella pneumophila that specifically regulates K6-linked poly-ubiquitin. We demonstrate the utility of LotA for studying K6 poly-ubiquitin signals. We identify the structural basis of LotA activation and poly-ubiquitin specificity and describe an essential "adaptive" ubiquitin-binding domain. Without LotA activity during infection, the Legionella-containing vacuole becomes decorated with K6 poly-ubiquitin as well as the AAA ATPase VCP/p97/Cdc48. We propose that LotA's deubiquitinase activity guards Legionella-containing vacuole components from ubiquitin-dependent extraction.


Assuntos
Legionella pneumophila , Ubiquitina , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação , Poliubiquitina/genética , Poliubiquitina/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Enzimas Desubiquitinantes/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(48): e2206739119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409909

RESUMO

The serious threats posed by drug-resistant bacterial infections and recent developments in synthetic biology have fueled a growing interest in genetically engineered phages with therapeutic potential. To date, many investigations on engineered phages have been limited to proof of concept or fundamental studies using phages with relatively small genomes or commercially available "phage display kits". Moreover, safeguards supporting efficient translation for practical use have not been implemented. Here, we developed a cell-free phage engineering and rebooting platform. We successfully assembled natural, designer, and chemically synthesized genomes and rebooted functional phages infecting gram-negative bacteria and acid-fast mycobacteria. Furthermore, we demonstrated the creation of biologically contained phages for the treatment of bacterial infections. These synthetic biocontained phages exhibited similar properties to those of a parent phage against lethal sepsis in vivo. This efficient, flexible, and rational approach will serve to accelerate phage biology studies and can be used for many practical applications, including phage therapy.


Assuntos
Infecções Bacterianas , Bacteriófagos , Terapia por Fagos , Humanos , Bacteriófagos/genética , Contenção de Riscos Biológicos , Biologia Sintética , Infecções Bacterianas/terapia
6.
Proc Natl Acad Sci U S A ; 119(23): e2122872119, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35653564

RESUMO

Adenosine diphosphate (ADP) ribosylation is a reversible posttranslational modification involved in the regulation of numerous cellular processes. Prototype ADP ribosyltransferases (ARTs) from many pathogenic bacteria are known to function as toxins, while other bacterial ARTs have just recently emerged. Recent studies have shown that bacteria also possess enzymes that function as poly-ADP ribose (ADPr) glycohydrolases (PARGs), which reverse poly-ADP ribosylation. However, how bacteria manipulate host target proteins by coordinated reactions of ARTs and ADPr hydrolases (ARHs) remains elusive. The intracellular bacterial pathogen Legionella pneumophila, the causative agent of Legionnaires' disease, transports a large array of effector proteins via the Dot/Icm type IV secretion system to host cells. The effector proteins, which mostly function as enzymes, modulate host cellular processes for the bacteria's benefit. In this study, we identified a pair of L. pneumophila effector proteins, Lpg0080 and Lpg0081, which function as an ART and an ARH, respectively. The two proteins were shown to coordinately modulate mitochondrial ADP/adenosine triphosphate (ATP) translocases (ANTs) by their enzymatic activities to conjugate ADPr to, and remove it from, a key arginine residue. The crystal structures of Lpg0081 and the Lpg0081:ADPr complex indicated that Lpg0081 is a macroD-type ARH with a noncanonical macrodomain, whose folding topology is strikingly distinct from that of the canonical macrodomain that is ubiquitously found in eukaryotic PARGs and ARHs. Our results illustrate that L. pneumophila has acquired an effector pair that coordinately manipulate mitochondrial activity via reversible chemical modification of ANTs.


Assuntos
Legionella pneumophila , Legionella , Difosfato de Adenosina , Trifosfato de Adenosina , Proteínas de Bactérias , Mitocôndrias/fisiologia , Translocases Mitocondriais de ADP e ATP
7.
J Cell Sci ; 135(6)2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35224642

RESUMO

The gram-negative bacterium, Legionella pneumophila is known to manipulate the host cellular functions. L. pneumophila secretes bacterial proteins called Legionella effectors into the host cytosol that are necessary for these manipulations. The Legionella effector Lpg1137 was identified as a serine protease responsible for the degradation of syntaxin 17 (Stx17). However, how Lpg1137 specifically recognizes and degrades Stx17 remained unknown. Given that Stx17 is localized in the ER, mitochondria-associated membrane (MAM), and mitochondria, Lpg1137 likely distributes to these compartments to recognize Stx17. Here, we show that the C-terminal region of Lpg1137 binds to phosphatidic acid (PA), a MAM and mitochondria-enriched phospholipid, and that this binding is required for the correct intracellular distribution of Lpg1137. Two basic residues in the C-terminal region of Lpg1137 are required for PA binding and their mutation causes mislocalization of Lpg1137. This mutant also fails to degrade Stx17 while retaining protease activity. Taken together, our data reveal that Lpg1137 utilizes PA for its distribution to the membranous compartments in which Stx17 is localized.


Assuntos
Legionella pneumophila , Legionella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Legionella/metabolismo , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Ácidos Fosfatídicos/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo
8.
J Bacteriol ; 204(1): e0037621, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34633867

RESUMO

Pathogenic bacteria have acquired a vast array of eukaryotic-protein-like proteins via intimate interaction with host cells. Bacterial effector proteins that function as ubiquitin ligases and deubiquitinases (DUBs) are remarkable examples of such molecular mimicry. LotA, a Legionella pneumophila effector, belongs to the ovarian tumor (OTU) superfamily, which regulates diverse ubiquitin signals by their DUB activities. LotA harbors two OTU domains that have distinct reactivities; the first one is responsible for the cleavage of the K6-linked ubiquitin chain, and the second one shows an uncommon preference for long chains of ubiquitin. Here, we report the crystal structure of a middle domain of LotA (LotAM), which contains the second OTU domain. LotAM consists of two distinct subdomains, a catalytic domain having high structural similarity with human OTU DUBs and an extended helical lobe (EHL) domain, which is characteristically conserved only in Legionella OTU DUBs. The docking simulation of LotAM with ubiquitin suggested that hydrophobic and electrostatic interactions between the EHL of LotAM and the C-terminal region of ubiquitin are crucial for the binding of ubiquitin to LotAM. The structure-based mutagenesis demonstrated that the acidic residue in the characteristic short helical segment termed the "helical arm" is essential for the enzymatic activity of LotAM. The EHL domain of the three Legionella OTU DUBs, LotA, LotB, and LotC, share the "helical arm" structure, suggesting that the EHL domain defines the Lot-OTUs as a unique class of DUBs. IMPORTANCE To successfully colonize, some pathogenic bacteria hijack the host ubiquitin system. Legionella OTU-like-DUBs (Lot-DUBs) are novel bacterial deubiquitinases found in effector proteins of L. pneumophila. LotA is a member of Lot-DUBs and has two OTU domains (OTU1 and OTU2). We determined the structure of a middle fragment of LotA (LotAM), which includes OTU2. LotAM consists of the conserved catalytic domain and the Legionella OTUs-specific EHL domain. The docking simulation with ubiquitin and the mutational analysis suggested that the acidic surface in the EHL is essential for enzymatic activity. The structure of the EHL differs from those of other Lot-DUBs, suggesting that the variation of the EHL is related to the variable cleaving specificity of each DUB.


Assuntos
Proteínas de Bactérias/metabolismo , Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/enzimologia , Ubiquitina/metabolismo , Proteínas de Bactérias/genética , Cristalização , Enzimas Desubiquitinantes/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Modelos Moleculares , Conformação Proteica , Domínios Proteicos
9.
Microbiol Immunol ; 66(2): 67-74, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34807482

RESUMO

The intracellular bacterial pathogen Legionella pneumophila utilizes the Dot/Icm type IV secretion system to translocate approximately 300 effector proteins to establish a replicative niche known as the Legionella-containing vacuole. The Dot/Icm system is classified as a type IVB secretion system, which is evolutionarily closely related to the I-type conjugation systems and is distinct from type IVA secretion systems, such as the Agrobacterium VirB/D4 system. Although both type IVA and IVB systems directly transport nucleic acids or proteins into the cytosol of recipient cells, the components and architecture of type IVB systems are much more complex than those of type IVA systems. Taking full advantage of rapidly developing cryo-electron microscopy techniques, the structural details of the transport apparatus and coupling complexes in the Dot/Icm system have been clarified in the past few years. In this review, we summarize recent progress in the structural studies of the L. pneumophila type IVB secretion system and the insights gained into the mechanisms of substrate recognition and transport.


Assuntos
Legionella pneumophila , Sistemas de Secreção Tipo IV , Proteínas de Bactérias , Microscopia Crioeletrônica , Vacúolos
10.
STAR Protoc ; 2(2): 100410, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870219

RESUMO

The intracellular bacterial pathogen Legionella pneumophila exploits host cellular systems using approximately 300 effector proteins to establish a replicative niche known as the Legionella-containing vacuole (LCV). During infection, both host and bacterial proteins interactively function on the LCVs. Here, we describe a detailed step-by-step protocol to visualize proteins associated with LCVs in host cells. This protocol can aid in analyzing whether a protein of interest influences the subcellular localization of LCV-associated proteins during infection. For complete details on the use and execution of this protocol, please refer to Kitao et al. (2020).


Assuntos
Proteínas de Bactérias/análise , Técnicas Bacteriológicas/métodos , Imunofluorescência/métodos , Legionella pneumophila/química , Vacúolos , Proteínas de Bactérias/química , Técnicas de Cultura de Células , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Plasmídeos/genética , Plasmídeos/metabolismo , Transfecção , Vacúolos/química , Vacúolos/microbiologia
11.
PLoS Pathog ; 17(3): e1009437, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33760868

RESUMO

Legionella pneumophila (L. pneumophila) is a gram-negative bacterium that replicates in a compartment that resembles the host endoplasmic reticulum (ER). To create its replicative niche, L. pneumophila manipulates host membrane traffic and fusion machineries. Bacterial proteins called Legionella effectors are translocated into the host cytosol and play a crucial role in these processes. In an early stage of infection, Legionella subverts ER-derived vesicles (ERDVs) by manipulating GTPase Rab1 to facilitate remodeling of the Legionella-containing vacuole (LCV). Subsequently, the LCV associates with the ER in a mechanism that remains elusive. In this study, we show that L. pneumophila recruits GTPases Rab33B and Rab6A, which regulate vesicle trafficking from the Golgi to the ER, to the LCV to promote the association of LCV with the ER. We found that recruitment of Rab6A to the LCV depends on Rab33B. Legionella effector SidE family proteins, which phosphoribosyl-ubiquitinate Rab33B, were found to be necessary for the recruitment of Rab33B to the LCV. Immunoprecipitation experiments revealed that L. pneumophila facilitates the interaction of Rab6 with ER-resident SNAREs comprising syntaxin 18, p31, and BNIP1, but not tethering factors including NAG, RINT-1, and ZW10, which are normally required for syntaxin 18-mediated fusion of Golgi-derived vesicles with the ER. Our results identified a Rab33B-Rab6A cascade on the LCV and the interaction of Rab6 with ER-resident SNARE proteins for the association of LCV with the ER and disclosed the unidentified physiological role of SidE family proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Legionella pneumophila/patogenicidade , Doença dos Legionários/metabolismo , Vacúolos/microbiologia , Proteínas de Bactérias/metabolismo , Retículo Endoplasmático/microbiologia , Complexo de Golgi/microbiologia , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/metabolismo , Transporte Proteico/fisiologia , Vacúolos/metabolismo
12.
Curr Microbiol ; 78(4): 1267-1276, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33638001

RESUMO

The bacterium Staphylococcus aureus, which colonizes healthy human skin, may cause diseases, such as atopic dermatitis (AD). Treatment for such AD cases involves antibiotic use; however, alternate treatments are preferred owing to the development of antimicrobial resistance. This study aimed to characterize the novel bacteriophage SaGU1 as a potential agent for phage therapy to treat S. aureus infections. SaGU1 that infects S. aureus strains previously isolated from the skin of patients with AD was screened from sewage samples in Gifu, Japan. Its genome was sequenced and analyzed using bioinformatics tools, and the morphology, lytic activity, stability, and host range of the phage were determined. The SaGU1 genome was 140,909 bp with an average GC content of 30.2%. The viral chromosome contained 225 putative protein-coding genes and four tRNA genes, carrying neither toxic nor antibiotic resistance genes. Electron microscopy analysis revealed that SaGU1 belongs to the Myoviridae family. Stability tests showed that SaGU1 was heat-stable under physiological and acidic conditions. Host range testing revealed that SaGU1 can infect a broad range of S. aureus clinical isolates present on the skin of AD patients, whereas it did not kill strains of Staphylococcus epidermidis, which are symbiotic resident bacteria on human skin. Hence, our data suggest that SaGU1 is a potential candidate for developing a phage therapy to treat AD caused by pathogenic S. aureus.


Assuntos
Dermatite Atópica , Staphylococcus aureus , Genoma Viral , Humanos , Japão , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
13.
Viruses ; 13(1)2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375201

RESUMO

Atopic dermatitis is accompanied by the abnormal overgrowth of Staphylococcus aureus, a common cause of skin infections and an opportunistic pathogen. Although administration of antibiotics is effective against S. aureus, the resulting reduction in healthy microbiota and the emergence of drug-resistant bacteria are of concern. We propose that phage therapy can be an effective strategy to treat atopic dermatitis without perturbing the microbiota structure. In this study, we examined whether the S. aureus phage SaGU1 could be a tool to counteract the atopic exacerbation induced by S. aureus using an atopic mouse model. Administration of SaGU1 to the back skin of mice reduced both S. aureus counts and the disease exacerbation caused by S. aureus. Furthermore, the S. aureus-mediated exacerbation of atopic dermatitis with respect to IgE plasma concentration and histopathological findings was ameliorated by the application of SaGU1. We also found that Staphylococcus epidermidis, a typical epidermal symbiont in healthy skin, significantly attenuated the emergence of SaGU1-resistant S. aureus under co-culture with S. aureus and S. epidermidis in liquid culture infection experiments. Our results suggest that phage therapy using SaGU1 could be a promising clinical treatment for atopic dermatitis.


Assuntos
Dermatite Atópica/etiologia , Dermatite Atópica/terapia , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus aureus/virologia , Staphylococcus epidermidis/fisiologia , Antibiose , Bacteriólise , Biópsia , Terapia Combinada , Dermatite Atópica/patologia , Resistência à Doença/genética , Interações Hospedeiro-Patógeno , Humanos , Terapia por Fagos , Infecções Estafilocócicas/patologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-32974222

RESUMO

The intracellular bacterial pathogen Legionella pneumophila employs bacteria-derived effector proteins in a variety of functions to exploit host cellular systems. The ubiquitination machinery constitutes a crucial eukaryotic system for the regulation of numerous cellular processes, and is a representative target for effector-mediated bacterial manipulation. L. pneumophila transports over 300 effector proteins into host cells through its Dot/Icm type IV secretion system. Among these, several effector proteins have been found to function as ubiquitin ligases, including unprecedented enzymes that catalyze ubiquitination through unconventional mechanisms. Recent studies have identified many L. pneumophila effector proteins that can interfere with ubiquitination. These effectors include proteins that are distantly related to the ovarian tumor protein superfamily described as deubiquitinases (DUBs), which regulate important signaling cascades in human cells. Intriguingly, L. pneumophila DUBs are not limited to enzymes that exhibit canonical DUB activity. Some L. pneumophila DUBs can catalyze the cleavage of the unconventional linkage between ubiquitin and substrates. Furthermore, novel mechanisms have been found that adversely affect the function of specific ubiquitin ligases; for instance, effector-mediated posttranslational modifications of ubiquitin ligases result in the inhibition of their activity. In the context of L. pneumophila infection, the existence of enzymes that reverse ubiquitination primarily relates to a fine tuning of biogenesis and remodeling of the Legionella-containing vacuole as a replicative niche. The complexity of the effector arrays reflects sophisticated strategies that bacteria have adopted to adapt their host environment and enable their survival in host cells. This review summarizes the current state of knowledge on the divergent mechanisms of the L. pneumophila effectors that can reverse ubiquitination, which is mediated by other effectors as well as the host ubiquitin machinery.


Assuntos
Legionella pneumophila , Legionella , Doença dos Legionários , Proteínas de Bactérias/metabolismo , Humanos , Legionella/metabolismo , Legionella pneumophila/metabolismo , Sistemas de Secreção Tipo IV/metabolismo , Ubiquitinação
15.
Cell Rep ; 32(10): 108107, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32905772

RESUMO

The intracellular bacterial pathogen Legionella pneumophila uses many effector proteins delivered by the bacterial type IV secretion system (T4SS) to hijack the early secretory pathway to establish its replicative niche, known as the Legionella-containing vacuole (LCV). On LCV biogenesis, the endoplasmic reticulum (ER) vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptors (v-SNARE) Sec22b is recruited to the bacterial phagosome and forms non-canonical pairings with target membrane SNAREs (t-SNAREs) from the plasma membrane. Here, we identify a Legionella deubiquitinase (DUB), LotB, that can modulate the early secretory pathway by interacting with coatomer protein complex I (COPI) vesicles when ectopically expressed. We show that Sec22b is ubiquitinated upon L. pneumophila infection in a T4SS-dependent manner and that, subsequently, LotB deconjugates K63-linked ubiquitins from Sec22b. The DUB activity of LotB stimulates dissociation of the t-SNARE syntaxin 3 (Stx3) from Sec22b, which resides on the LCV. Our study highlights a bacterial strategy manipulating the dynamics of infection-induced SNARE pairing using a bacterial DUB.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Legionella pneumophila/patogenicidade , Proteínas de Bactérias/metabolismo , Transfecção
16.
Nat Commun ; 11(1): 2623, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32457311

RESUMO

The Legionella pneumophila Dot/Icm type IVB secretion system (T4BSS) is extremely versatile, translocating ~300 effector proteins into host cells. This specialized secretion system employs the Dot/Icm type IVB coupling protein (T4CP) complex, which includes IcmS, IcmW and LvgA, that are known to selectively assist the export of a subclass of effectors. Herein, the crystal structure of a four-subunit T4CP subcomplex bound to the effector protein VpdB reveals an interaction between LvgA and a linear motif in the C-terminus of VpdB. The same binding interface of LvgA also interacts with the C-terminal region of three additional effectors, SidH, SetA and PieA. Mutational analyses identified a FxxxLxxxK binding motif that is shared by VpdB and SidH, but not by SetA and PieA, showing that LvgA recognizes more than one type of binding motif. Together, this work provides a structural basis for how the Dot/Icm T4CP complex recognizes effectors, and highlights the multiple substrate-binding specificities of its adaptor subunit.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Sistemas de Secreção Tipo IV/química , Sistemas de Secreção Tipo IV/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Linhagem Celular , Cristalografia por Raios X , Humanos , Legionella pneumophila/química , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Modelos Moleculares , Complexos Multiproteicos , Ligação Proteica , Transporte Proteico , Sistemas de Secreção Tipo IV/genética
17.
Methods Mol Biol ; 1921: 241-247, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30694496

RESUMO

Legionella utilizes specialized protein secretion machinery called the type IV secretion system encoded by dot/icm genes to modulate host cellular systems. We describe here the procedure to isolate the core complex of the Dot/Icm type IV secretion system of L. pneumophila based on detergent lysis of bacteria and ultracentrifugation. The isolated protein complex can be applied for biochemical and transmission electron microscopy analysis.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Legionella pneumophila/fisiologia , Doença dos Legionários/microbiologia , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Sistemas de Secreção Tipo IV , Cromatografia/métodos , Humanos , Legionella pneumophila/ultraestrutura , Complexos Multiproteicos/ultraestrutura , Ultracentrifugação/métodos
18.
Curr Opin Microbiol ; 47: 14-19, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391778

RESUMO

Bacterial pathogens utilize eukaryotic cellular systems in various ways for their own benefits. To counteract host immune responses and survive in cells, bacteria modify host signaling pathways. For this aim, they have evolved virulence secretion systems. Bacteria-encoded effector proteins delivered via these secretion systems are the key players in bacterial pathogenesis. Ubiquitination is a post-translational modification that governs eukaryotic cellular systems. Recent studies have revealed that many bacterial effector proteins target the host ubiquitin system, often acting as ubiquitin-modulating enzymes such as ubiquitin ligases and deubiquitinases. Emerging lines of evidence have unveiled the diversity of bacterial deubiquitinases and have provided insights into the bacterial strategy to exploit the host ubiquitin system.


Assuntos
Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Enzimas Desubiquitinantes/metabolismo , Células Eucarióticas/microbiologia , Interações Hospedeiro-Patógeno , Fatores de Virulência/metabolismo
19.
Cell Microbiol ; 20(7): e12840, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29543380

RESUMO

The intracellular bacterial pathogen, Legionella pneumophila, establishes the replicative niche as a result of the actions of a large array of effector proteins delivered via the Legionella Type 4 secretion system. Many effector proteins are expected to be involved in biogenesis and regulation of the Legionella-containing vacuole (LCV) that is highly decorated with ubiquitin. Here, we identified a Legionella deubiquitinase, designated LotA, by carrying out a genome analysis to find proteins resembling the eukaryotic ovarian tumour superfamily of cysteine proteases. LotA exhibits a dual ability to cleave ubiquitin chains that is dependent on 2 distinctive catalytic cysteine residues in the eukaryotic ovarian tumour domains. One cysteine dominantly contributes to the removal of ubiquitin from the LCVs by its polyubiquitin cleavage activity. The other specifically cleaves conjugated Lys6-linked ubiquitin. After delivered by the Type 4 secretion system, LotA localises on the LCVs via its PI(3)P-binding domain. The lipid-binding ability of LotA is crucial for ubiquitin removal from the vacuoles. We further analysed the functional interaction of the protein with the recently reported noncanonical ubiquitin ligases of L. pneumophila, revealing that the effector proteins are involved in coordinated regulation that contributes to bacterial growth in the host cells.


Assuntos
Enzimas Desubiquitinantes/metabolismo , Interações Hospedeiro-Patógeno , Legionella pneumophila/enzimologia , Legionella pneumophila/crescimento & desenvolvimento , Ubiquitina/metabolismo , Biologia Computacional , Mineração de Dados , Células HEK293 , Células HeLa , Humanos , Legionella pneumophila/genética , Metabolismo dos Lipídeos , Ligação Proteica , Vacúolos/metabolismo , Vacúolos/microbiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-28971069

RESUMO

Bacterial pathogens like Salmonella and Legionella establish intracellular niches in host cells known as bacteria-containing vacuoles. In these vacuoles, bacteria can survive and replicate. Ubiquitin-dependent selective autophagy is a host defense mechanism to counteract infection by invading pathogens. The Legionella effector protein RavZ interferes with autophagy by irreversibly deconjugating LC3, an autophagy-related ubiquitin-like protein, from a phosphoglycolipid phosphatidylethanolamine. Using a co-infection system with Salmonella, we show here that Legionella RavZ interferes with ubiquitin recruitment to the Salmonella-containing vacuoles. The inhibitory activity is dependent on the same catalytic residue of RavZ that is involved in LC3 deconjugation. In semi-permeabilized cells infected with Salmonella, external addition of purified RavZ protein, but not of its catalytic mutant, induced removal of ubiquitin associated with Salmonella-containing vacuoles. The RavZ-mediated restriction of ubiquitin recruitment to Salmonella-containing vacuoles took place in the absence of the host system required for LC3 conjugation. These observations suggest the possibility that the targets of RavZ deconjugation activity include not only LC3, but also ubiquitin.


Assuntos
Proteínas de Bactérias/metabolismo , Legionella pneumophila/metabolismo , Doença dos Legionários/microbiologia , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Vacúolos/microbiologia , Animais , Autofagia , Proteínas de Bactérias/genética , Células HEK293 , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Macrófagos , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Cultura Primária de Células , Salmonella/metabolismo , Ubiquitinas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...