Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 137(6): 471-479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38472071

RESUMO

Chinese hamster ovary (CHO) cells are widely used as a host for producing recombinant therapeutic proteins due to advantages such as human-like post-translational modification, correct protein folding, higher productivity, and a proven track record in biopharmaceutical development. Much effort has been made to improve the process of recombinant protein production, in terms of its yield and productivity, using conventional CHO cell lines. However, to the best of our knowledge, no attempts have been made to acquire new CHO cell lines from Chinese hamster ovary. In this study, we established and characterized a novel CHO cell line, named CHO-MK, derived from freshly isolated Chinese hamster ovary tissues. Some immortalized cell lines were established via sub-culture derived from primary culture, one of which was selected for further development toward a unique expression system design. After adapting serum-free and suspension culture conditions, the resulting cell line exhibited a considerably shorter doubling time (approximately 10 h) than conventional CHO cell lines (approximately 20 h). Model monoclonal antibody (IgG1)-producing cells were generated, and the IgG1 concentration of fed-batch culture reached approximately 5 g/L on day 8 in a 200-L bioreactor. The cell bank of CHO-MK cells was prepared as a new host and assessed for contamination by adventitious agents, with the results indicating that it was free from any such contaminants, including infectious viruses. Taking these findings together, this study showed the potential of CHO-MK cells with a shorter doubling time/process time and enhanced productivity in biologics manufacturing.


Assuntos
Anticorpos Monoclonais , Produtos Biológicos , Reatores Biológicos , Cricetulus , Proteínas Recombinantes , Células CHO , Animais , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Cricetinae , Anticorpos Monoclonais/biossíntese , Produtos Biológicos/metabolismo , Imunoglobulina G/metabolismo , Técnicas de Cultura de Células/métodos , Humanos , Técnicas de Cultura Celular por Lotes/métodos
2.
Biotechnol Bioeng ; 118(2): 944-951, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33179258

RESUMO

Cell-to-cell variability in cell populations arises from a combination of intrinsic factors and extrinsic factors related to the milieu. However, the heterogeneity of high cell density suspension cultures for therapeutic protein production remains unknown. Here, we illustrate the increasing heterogeneity in the cellular transcriptome of serum-free adapted CHO K1 cells during high cell density suspension culture over time without concomitant changes in the genomic sequence. Cell cycle-dependent subpopulations and cell clusters, which typically appear in other single-cell transcriptome analyses, were not found in these suspension cultures. Our results indicate that cell division changes the intracellular microenvironment and leads to cell cycle-dependent heterogeneity. Whole mitochondrial single-cell genome sequencing showed cell-to-cell mitochondrial genome variation and heteroplasmy within cells. The mitochondrial genome sequencing method developed here is potentially useful for the validation of cell clonality. The culture time-dependent increase in cellular heterogeneity observed in this study did not show any attenuation in this increasing heterogeneity. Future advances in bioengineering such as culture upscaling, prolonged culturing, and complex culture systems will be confronted with the need to assess and control cellular heterogeneity, and the method described here may prove useful for this purpose.


Assuntos
Técnicas de Cultura de Células , Divisão Celular , Perfilação da Expressão Gênica , Genoma Mitocondrial , Análise de Célula Única , Animais , Células CHO , Cricetulus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...