Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 8(11)2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31731501

RESUMO

Hybrid weakness is a type of reproductive isolation in which F1 hybrids of normal parents exhibit weaker growth characteristics than their parents. F1 hybrid of the Oryza sativa Indian cultivars 'P.T.B.7' and 'A.D.T.14' exhibits hybrid weakness that is associated with the HWA1 and HWA2 loci. Accordingly, the aim of the present study was to analyze the hybrid weakness phenotype of the 'P.T.B.7' × 'A.D.T.14' hybrids. The height and tiller number of the F1 hybrid were lower than those of either parent, and F1 hybrid also exhibited leaf yellowing that was not observed in either parent. In addition, the present study demonstrates that SPAD values, an index correlated with chlorophyll content, are effective for evaluating the progression of hybrid weakness that is associated with the HWA1 and HWA2 loci because it accurately reflects degree of leaf yellowing. Both cell death and H2O2, a reactive oxygen species, were detected in the yellowing leaves of the F1 hybrid. Furthermore, disease resistance-related genes were upregulated in the yellowing leaves of the F1 hybrids, whereas photosynthesis-related genes tended to be downregulated. These results suggest that the hybrid weakness associated with the HWA1 and HWA2 loci involves hypersensitive response-like mechanisms.

2.
Genes Genet Syst ; 91(1): 37-40, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27074980

RESUMO

Floricultural cultivars of the Japanese morning glory (Ipomoea nil) carry transposons of the Tpn1 family as active spontaneous mutagens. Half of the characterized mutations related to floricultural traits were caused by insertion of Tpn1 family elements. In addition, mutations comprising insertions of several bp, presumed to be footprints generated by transposon excisions, were also found. Among these, ca-1 and ca-2 are 7-bp insertions at the same position in the InWDR1 gene, which encodes a multifunctional transcription regulator. InWDR1 enhances anthocyanin pigmentation in blue flowers and red stems, and promotes dark brown seed pigmentation as well as seed-trichome formation. The recessive ca mutants show white flowers and whitish seeds. We characterized here a white flower and whitish seed line that is used as a medicinal herb. The mutant line carries a novel ca allele named ca-3, which is the InWDR1 gene carrying an insertion of a Stowaway-like transposon, InSto1. The ca-3 allele is the first example of a mutation induced by transposons other than those in the Tpn1 family in I. nil. Because InSto1 and the 7-bp putative footprints are inserted at identical positions in InWDR1, ca-3 is likely to be the ancestor of ca-1 and ca-2. According to Japanese historical records on whitish seeds of I. nil, putative ca mutants appeared at the end of the 17th century, at the latest. This is around one hundred years before the appearance of many floricultural mutants. This suggests that ca-3 is one of the oldest mutations, and that its origin is different from that of most floricultural mutations in I. nil.


Assuntos
Flores/genética , Ipomoea nil/genética , Pigmentação/genética , Plantas Medicinais/genética , Antocianinas/genética , Antocianinas/metabolismo , Elementos de DNA Transponíveis/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Ipomoea nil/crescimento & desenvolvimento , Mutação , Fenótipo , Plantas Medicinais/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento
3.
Breed Sci ; 66(5): 776-789, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28163594

RESUMO

A pair of complementary genes, Hwc1-1 at HWC1 locus and Hwc2-1 at HWC2 locus, cause a weakness phenomenon in rice. For this study, we performed haplotype analysis around the HWC2 locus in two core collections comprising 119 accessions. We also examined reactions to phenol and Xanthomonas oryzae pv. oryzae (Xoo) Japanese race I. To elucidate the genetic relations among all accessions, we analyzed their banding patterns of 40 Indel markers covering the rice genome. The classification by Indel markers was almost consistent with that using 4,357 SNPs. The testcross with Hwc1-1 carrier indicated that 37 accessions carried Hwc2-1 allele, whereas 82 carried hwc2-2 allele. Strong association between HWC2 and Ph genes was observed. Based on 14 DNA markers around HWC2 locus and Ph genotype, the 119 accessions were divided into 50 haplotypes. To examine the HWC2 candidate chromosomal region specifically, the 'haplotype group' characterized by the six DNA markers closely linked with HWC2 were analyzed. Hwc2-1 carriers had the same haplotype group. Some hwc2-2 haplotype groups were associated with resistance against the Xoo race. The relation between varietal differentiation and haplotypes around the HWC2 locus was discussed, along with its breeding significance.

4.
Breed Sci ; 62(1): 99-104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23136520

RESUMO

Although Japanese morning glory (Ipomoea nil (L.) Roth.) has been used intensively for genetic studies, DNA markers have not been developed in Ipomoea nil sufficient to cover all chromosomes. Therefore, we conducted microsatellite (simple sequence repeats, SSR) marker development in I. nil for future genetic studies. From 92,662 expressed sequence tag (EST) sequences, 514 unique microsatellite-containing ESTs were identified. Primer pairs were designed automatically in 326 SSRs. Of 150 SSRs examined, 75 showed polymorphisms among strains. A phenogram based on the SSR genotypes revealed the genetic relation among seven Japanese morning glories from five different regions of the world and an ivyleaf morning glory (I. hederacea Jacq.). The developed SSR markers might be applicable for genetic studies of morning glories and their relatives.

5.
BMC Plant Biol ; 12: 80, 2012 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-22672714

RESUMO

BACKGROUND: Peanut (Arachis hypogaea) is an autogamous allotetraploid legume (2n = 4x = 40) that is widely cultivated as a food and oil crop. More than 6,000 DNA markers have been developed in Arachis spp., but high-density linkage maps useful for genetics, genomics, and breeding have not been constructed due to extremely low genetic diversity. Polymorphic marker loci are useful for the construction of such high-density linkage maps. The present study used in silico analysis to develop simple sequence repeat-based and transposon-based markers. RESULTS: The use of in silico analysis increased the efficiency of polymorphic marker development by more than 3-fold. In total, 926 (34.2%) of 2,702 markers showed polymorphisms between parental lines of the mapping population. Linkage analysis of the 926 markers along with 253 polymorphic markers selected from 4,449 published markers generated 21 linkage groups covering 2,166.4 cM with 1,114 loci. Based on the map thus produced, 23 quantitative trait loci (QTLs) for 15 agronomical traits were detected. Another linkage map with 326 loci was also constructed and revealed a relationship between the genotypes of the FAD2 genes and the ratio of oleic/linoleic acid in peanut seed. CONCLUSIONS: In silico analysis of polymorphisms increased the efficiency of polymorphic marker development, and contributed to the construction of high-density linkage maps in cultivated peanut. The resultant maps were applicable to QTL analysis. Marker subsets and linkage maps developed in this study should be useful for genetics, genomics, and breeding in Arachis. The data are available at the Kazusa DNA Marker Database (http://marker.kazusa.or.jp).


Assuntos
Arachis/genética , Elementos de DNA Transponíveis , Repetições de Microssatélites , Polimorfismo Genético , Mapeamento Cromossômico , DNA de Plantas/genética , Ligação Genética , Marcadores Genéticos , Locos de Características Quantitativas
6.
Ann Bot ; 106(2): 267-76, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20519236

RESUMO

BACKGROUND AND AIMS: Reproductive isolation is a mechanism that separates species, and is classified into two types: prezygotic and postzygotic. Inviability of hybrids, or hybrid lethality, is a type of postzygotic isolation and is observed in some plant species, including Nicotiana species. Previous work has shown that the Q chromosome, which belongs to the S subgenome of N. tabacum, encodes one or more genes leading to hybrid lethality in some crosses. METHODS: Interspecific crosses of eight wild species were conducted in section Suaveolentes (which consists of species restricted to Australasia and Africa) with the cultivated species Nicotiana tabacum. Hybrid seedlings were cultivated at 28, 34 or 36 degrees C, and PCR and chromosome analysis were performed. RESULTS AND CONCLUSIONS: Seven of eight wild species produced inviable hybrids after crossing. Hybrid lethality, which was observed in all crosses at 28 degrees C, was Type II lethality, with the characteristic symptoms of browning of hypocotyl and roots; lethality was suppressed at elevated temperatures (34 or 36 degrees C). Furthermore, one or more genes on the Q chromosome of N. tabacum were absolutely responsible for hybrid lethality, suggesting that many species of section Suaveolentes share the same factor that triggers hybrid lethality by interaction with the genes on the Q chromosome. Exceptionally, only one wild species, N. fragrans, produced 100 % viable hybrids after crossing with N. tabacum, suggesting that N. fragrans has no factor triggering hybrid lethality.


Assuntos
Quimera/fisiologia , Nicotiana/fisiologia , Quimera/genética , Cromossomos de Plantas/genética , Reação em Cadeia da Polimerase , Temperatura , Nicotiana/genética
7.
J Appl Genet ; 49(2): 135-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18436987

RESUMO

A common wheat (Triticum aestivum L.) mutation that produces 3 pistils (TP) per floret may result in formation of up to 3 kernels per floret. The TP trait may be important for increasing the number of grains per spike and for improving the yield potential through breeding. This trait is determined by the dominant Pis1 gene. Genetic mapping of Pis1 involved 234 microsatellite markers and bulk segregant analysis of a cross of the TP line with Novosibirskaya 67. The Pis1 gene is located on chromosome 2DL, between markers Xgwm539 and Xgwm349. This result does not agree with a previously published localization of the Pis1 gene on chromosome 5B. The possible importance of TP wheat as an alternative genetic resource is discussed.


Assuntos
Mapeamento Cromossômico , Flores , Mutação , Triticum/genética , Cromossomos de Plantas , Cruzamentos Genéticos
8.
Planta ; 226(3): 753-64, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17443342

RESUMO

Hybrid seedlings from the cross between Nicotiana tabacum, an allotetraploid composed of S and T subgenomes, and N. debneyi die at the cotyledonary stage. This lethality involves programmed cell death (PCD). We carried out reciprocal crosses between the two progenitors of N. tabacum, N. sylvestris and N. tomentosiformis, and N. debneyi to reveal whether only the S subgenome in N. tabacum is related to hybrid lethality. Hybrid seedlings from reciprocal crosses between N. sylvestris and N. debneyi showed lethal characteristics identical to those from the cross between N. tabacum and N. debneyi. Conversely, hybrid seedlings from reciprocal crosses between N. tomentosiformis and N. debneyi were viable. Furthermore, hallmarks of PCD were observed in hybrid seedlings from the cross N. debneyi x N. sylvestris, but not in hybrid seedlings from the cross N. debneyi x N. tomentosiformis. We also carried out crosses between monosomic lines of N. tabacum lacking the Q chromosome and N. debneyi. Using Q-chromosome-specific DNA markers, hybrid seedlings were divided into two groups, hybrids possessing the Q chromosome and hybrids lacking the Q chromosome. Hybrids possessing the Q chromosome died with characteristics of PCD. However, hybrids lacking the Q chromosome were viable and PCD did not occur. From these results, we concluded that the Q chromosome belonging to the S subgenome of N. tabacum encodes gene(s) leading to hybrid lethality in the cross N. tabacum x N. debneyi.


Assuntos
Apoptose , Cromossomos de Plantas/genética , Genes de Plantas , Hibridização Genética , Nicotiana/citologia , Nicotiana/genética , Linhagem da Célula , Núcleo Celular/metabolismo , Cruzamentos Genéticos , Fragmentação do DNA , Pólen/fisiologia , Técnica de Amplificação ao Acaso de DNA Polimórfico , Plântula/metabolismo , Especificidade da Espécie , Temperatura
9.
Plant Cell Rep ; 26(9): 1595-604, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17410367

RESUMO

Hybrid lethality is an important problem for cross-breeding; however, its molecular mechanism is not clear. The purpose of the present study was to identify the genes expressed during hybrid lethality in the hybrid cells (Nicotiana suaveolens x N. tabacum). In order to identify these genes, we employed suppression subtractive hybridization (SSH) between RNA isolated from cells expressing lethality (lethal hybrid line; LH line) and cells overcoming lethality fortuitously (a surviving hybrid line; SH line). Four populations of cDNA were created from the time points corresponding to before and during induction, and at and after the point of no return (PNR) during the process of programmed cell death (PCD) that occurs during hybrid lethality. By SSH and following dot-blot macroarray analysis, 99 genes out of 138 isolated clones were identified as hybrid lethality-related (HLR) genes. Quantitative real-time PCR analysis data indicated that ten clones were expressed specifically in LH line cells. The HLR genes in these clones show homology to genes involved in disease resistance, ethylene-induced reactions, phosphorylation, ubiquitination, jasmonic acid-related reactions, calcium signaling and self-incompatibility. These data suggested that at least some parts of the mechanism of hybrid lethality are shared with those of the putative functions of the HLR gene-related pathways.


Assuntos
Genes de Plantas , Células Híbridas/metabolismo , Hibridização Genética , Nicotiana/citologia , Nicotiana/genética , Hibridização de Ácido Nucleico/métodos , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
10.
Theor Appl Genet ; 114(8): 1407-15, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17375279

RESUMO

Hybrid weakness is a reproductive barrier that is found in many plant species. In rice, the hybrid weakness caused by two complementary genes, Hwc1 and Hwc2, has been surveyed intensively. However, their gene products and the molecular mechanism that causes hybrid weakness have remained unknown. We performed linkage analyses of Hwc1, narrowed down the area of interest to 60 kb, and identified eight candidate genes. In the F(2) population, in which both Hwc1 and Hwc2 genes were segregated, plants were separable into four classes according to their respective phenotypes: severe type, semi-severe type, F(1) type, and normal type. Severe type plants show such severe symptoms that they could produce only tiny shoot-like structures; they were unable to generate roots. Genetic analyses using closely linked DNA markers of the two genes showed that the symptoms of the F(2) plants were explainable by the genotypes of Hwc1 and Hwc2. Weakness was observed in plants that have both Hwc1 and Hwc2. In Hwc1 homozygote, the symptoms worsened and severe type or semi-severe type plants appeared. Consequently, Hwc1 should have a gene dosage effect and be a semi-dominant gene. The dosage effect of Hwc2 was recognizable, but it was not so severe as that in Hwc1. These results are useful to elucidate the mechanism that causes the hybrid weakness phenomenon and the role of each causal gene in hybrid weakness.


Assuntos
Alelos , Cromossomos de Plantas/genética , Dosagem de Genes , Hibridização Genética , Oryza/genética , Mapeamento Físico do Cromossomo , Infertilidade das Plantas/genética , Raízes de Plantas/genética , Brotos de Planta/genética , Reprodução/genética
11.
Microbiology (Reading) ; 149(Pt 8): 2243-2250, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12904564

RESUMO

Thymidylate kinase (TMK) catalyses the phosphorylation of dTMP to form dTDP in both the de novo and salvage pathways of dTTP synthesis in both prokaryotes and eukaryotes. Two homologues of bacterial thymidylate kinase genes were identified in a genomic library of the onion yellows (OY) phytoplasma, a plant pathogen that inhabits both plant phloem and the organs of insects. Southern blotting analysis suggested that the OY genome contained one copy of the tmk-b gene and multiple copies of the tmk-a gene. Sequencing of PCR products generated by amplification of tmk-a enabled identification of three other copies of tmk-a, although the ORF in each of these was interrupted by point mutations. The proteins, TMK-a and TMK-b, encoded by the two intact genes contained conserved motifs for catalytic activity. Both proteins were overexpressed as fusion proteins with a polyhistidine tag in Escherichia coli and purified, and TMK-b was shown to have thymidylate kinase activity. This is believed to be the first report of the catalytic activity of a phytoplasmal protein, and the OY phytoplasma is the first bacterial species to be found to have two intact homologues of tmk in its genome.


Assuntos
Acholeplasmataceae/enzimologia , Acholeplasmataceae/genética , Genes Bacterianos , Núcleosídeo-Fosfato Quinase/genética , Núcleosídeo-Fosfato Quinase/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Sequência Conservada , DNA Bacteriano/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Genoma Bacteriano , Insetos Vetores/microbiologia , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos
12.
Gene ; 298(2): 195-201, 2002 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-12426107

RESUMO

Two novel rolling circle replication (RCR) plasmids, pOYM (3932 nt) and pOYNIM (3062 nt), were isolated from a mildly pathogenic variant line (OY-M) and a mildly pathogenic plus non-insect-transmissible line (OY-NIM), respectively, of onion yellows (OY) phytoplasma, a plant and insect endocellular mollicute. OY-M was isolated from an original wild-type line (OY-W) after regular maintenance using alternate plant/insect infections, while OY-NIM was further isolated from OY-M after maintenance by plant grafting without insect vectors. The RCR-initiator proteins (Rep) of both plasmids, which have a characteristic structure with both plasmid- and virus-like domains, were highly homologous to that of a previously described OY-W plasmid, pOYW (3933 nt), and were expressed in OY-M- and OY-NIM-infected plants, indicating that this replicon is stably maintained in the phytoplasma. Interestingly, pOYNIM lacked two ORFs that exist in both pOYW and pOYM, which encode a single-stranded DNA binding protein (SSB) and an uncharacterized putative membrane protein, indicating that these two proteins are not necessary for the phytoplasma to live in plant cells. These are the first candidates as phytoplasma proteins possibly related to host specificity.


Assuntos
Proteínas de Ligação a DNA , Fases de Leitura Aberta/genética , Plasmídeos/genética , Tenericutes/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Northern Blotting , Southern Blotting , Chrysanthemum/metabolismo , Chrysanthemum/microbiologia , Clonagem Molecular , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/química , DNA Bacteriano/genética , Genótipo , Imuno-Histoquímica , Insetos/microbiologia , Dados de Sequência Molecular , Mutação , Análise de Sequência de DNA , Tenericutes/patogenicidade , Transativadores/genética , Transativadores/metabolismo , Virulência/genética
13.
Microbiology (Reading) ; 148(Pt 5): 1389-1396, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11988512

RESUMO

Recombination among bacterial extrachromosomal DNAs (EC-DNAs) plays a major evolutionary role by creating genetic diversity, and provides the potential for rapid adaptation to new environmental conditions. Previously, a 7 kbp EC-DNA, EcOYW1, with a geminivirus-like rolling-circle-replication protein (Rep) gene was isolated and characterized from an original wild-type line (OY-W) of onion yellows (OY) phytoplasma, an endocellular cell-wall-less prokaryote that inhabits the cytoplasm of both plant and insect cells. EcOYW1, found in OY-W, was not present in a mild-symptom line (OY-M) derived from OY-W. A 4 kbp EC-DNA, pOYW, was also isolated and characterized from OY-W, and its pLS1-plasmid-like rep gene was expressed. This paper describes the isolation and sequencing of an EC-DNA of 5560 nt, EcOYW2, from OY-W, and its counterpart EC-DNA of 5025 nt, EcOYM, from OY-M. EcOYW2 and EcOYM contained seven and six ORFs, respectively. They both encoded a geminivirus-like Rep and a putative single-stranded-DNA-binding protein (SSB). Southern blot analysis indicated that no more EC-DNAs with a rep gene exist in either OY-W or OY-M, which means that the complete set of EC-DNAs has been cloned from the OY-W and OY-M lines of OY phytoplasmas. Sequence analysis revealed that both EcOYW2 and EcOYM have chimeric structures of previously characterized EcOYW1 and pOYW, suggesting that they have a recombinational origin. This is the first evidence of intermolecular recombination between EC-DNAs in phytoplasma. The possible implications of these findings in increasing the biological diversity of phytoplasma are discussed.


Assuntos
Proteínas de Ligação a DNA , Variação Genética/genética , Recombinação Genética/genética , Tenericutes/citologia , Tenericutes/genética , Sequência de Aminoácidos , Southern Blotting , Clonagem Molecular , DNA Helicases/química , DNA Helicases/genética , Replicação do DNA/genética , DNA de Cadeia Simples/genética , Genes Bacterianos/genética , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , Plantas/microbiologia , Plasmídeos/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tenericutes/química , Transativadores/química , Transativadores/genética
14.
Microbiology (Reading) ; 147(Pt 2): 507-513, 2001 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-11158368

RESUMO

A new extrachromosomal DNA, EcOYW1, was cloned from the onion yellows phytoplasma (OY-W). Southern blot and PCR analysis showed that EcOYW1 is not present in the OY-M, a mild symptom line derived from OY-W. We determined the complete nucleotide sequence of EcOYW1; it is a circular dsDNA of 7.0 kbp in length, which contains seven ORFs. ORF1 encoded a homologue of the geminivirus Rep protein. Western immunoblot analysis revealed that this Rep homologue is expressed in OY-W infected plants, suggesting that EcOYW1 replicates via a geminivirus-like rolling-circle replication mechanism. EcOYW1 is the first phytoplasmal extrachromosomal DNA shown to express encoded genes.


Assuntos
Cromossomos Bacterianos/genética , Chrysanthemum cinerariifolium/microbiologia , DNA Helicases/metabolismo , Proteínas de Ligação a DNA , Geminiviridae/genética , Tenericutes/genética , Transativadores/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Helicases/genética , Replicação do DNA , DNA Bacteriano/genética , Geminiviridae/metabolismo , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Tenericutes/metabolismo , Tenericutes/patogenicidade , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...