Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(9): e0238592, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32877448

RESUMO

DNA assembly is an integral part of modern synthetic biology, as intricate genetic engineering projects require robust molecular cloning workflows. Golden Gate assembly is a frequently employed DNA assembly methodology that utilizes a Type IIS restriction enzyme and a DNA ligase to generate recombinant DNA constructs from smaller DNA fragments. However, the utility of this methodology has been limited by a lack of resources to guide experimental design. For example, selection of the DNA sequences at fusion sites between fragments is based on broad assembly guidelines or pre-vetted sets of junctions, rather than being customized for a particular application or cloning project. To facilitate the design of robust assembly reactions, we developed a high-throughput DNA sequencing assay to examine reaction outcomes of Golden Gate assembly with T4 DNA ligase and the most commonly used Type IIS restriction enzymes that generate three-base and four-base overhangs. Next, we incorporated these findings into a suite of webtools that design assembly reactions using the experimental data. These webtools can be used to create customized assemblies from a target DNA sequence or a desired number of fragments. Lastly, we demonstrate how using these tools expands the limits of current assembly systems by carrying out one-pot assemblies of up to 35 DNA fragments. Full implementation of the tools developed here enables direct expansion of existing assembly standards for modular cloning systems (e.g. MoClo) as well as the formation of robust new high-fidelity standards.


Assuntos
DNA/metabolismo , Biologia Sintética/métodos , DNA Ligases/metabolismo , Enzimas de Restrição do DNA/metabolismo , Nucleotídeos/metabolismo
2.
ACS Synth Biol ; 7(11): 2665-2674, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30335370

RESUMO

Synthetic biology relies on the manufacture of large and complex DNA constructs from libraries of genetic parts. Golden Gate and other Type IIS restriction enzyme-dependent DNA assembly methods enable rapid construction of genes and operons through one-pot, multifragment assembly, with the ordering of parts determined by the ligation of Watson-Crick base-paired overhangs. However, ligation of mismatched overhangs leads to erroneous assembly, and low-efficiency Watson Crick pairings can lead to truncated assemblies. Using sets of empirically vetted, high-accuracy junction pairs avoids this issue but limits the number of parts that can be joined in a single reaction. Here, we report the use of comprehensive end-joining ligation fidelity and bias data to predict high accuracy junction sets for Golden Gate assembly. The ligation profile accurately predicted junction fidelity in ten-fragment Golden Gate assembly reactions and enabled accurate and efficient assembly of a lac cassette from up to 24-fragments in a single reaction.


Assuntos
DNA/metabolismo , Biologia Sintética/métodos , Pareamento de Bases , DNA/química , DNA Ligases/metabolismo , Óperon Lac/genética
3.
Curr Protoc Mol Biol ; Chapter 3: Unit3.5, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18972387

RESUMO

This unit presents characteristics and reaction conditions of the DNA-dependent DNA polymerases, including E. coli DNA polymerase I and its Klenow fragment, T4 DNA polymerase, native and modified T7 DNA polymerase, phi29 DNA polymerase, Bst DNA polymerase, and Taq DNA polymerase. The unit also provides overviews of other classes of thermophilic DNA polymerases used in PCR applications (described fully in UNIT 15.1), and the rapidly expanding class of lesion-bypass DNA polymerases that play a role in DNA damage repair.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Marcação In Situ das Extremidades Cortadas/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Proteínas Virais/metabolismo , Proteínas de Bactérias/química , DNA Polimerase Dirigida por DNA/química , Estabilidade Enzimática , Proteínas Virais/química
4.
EMBO J ; 24(23): 4198-208, 2005 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-16308566

RESUMO

Many reactions in cells proceed via the sequestration of two DNA molecules in a synaptic complex. SfiI is a member of a growing family of restriction enzymes that can bind and cleave two DNA sites simultaneously. We present here the structures of tetrameric SfiI in complex with cognate DNA. The structures reveal two different binding states of SfiI: one with both DNA-binding sites fully occupied and the other with fully and partially occupied sites. These two states provide details on how SfiI recognizes and cleaves its target DNA sites, and gives insight into sequential binding events. The SfiI recognition sequence (GGCCNNNN[downward arrow]NGGCC) is a subset of the recognition sequence of BglI (GCCNNNN[downward arrow]NGGC), and both enzymes cleave their target DNAs to leave 3-base 3' overhangs. We show that even though SfiI is a tetramer and BglI is a dimer, and there is little sequence similarity between the two enzymes, their modes of DNA recognition are unusually similar.


Assuntos
DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Streptomyces/enzimologia , Domínio Catalítico , Cristalografia por Raios X , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo II/química , Dimerização , Conformação de Ácido Nucleico , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína
5.
Structure ; 12(9): 1741-7, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15341737

RESUMO

Most well-known restriction endonucleases recognize palindromic DNA sequences and are classified as Type IIP. Due to the recognition and cleavage symmetry, Type IIP enzymes are usually found to act as homodimers in forming 2-fold symmetric enzyme-DNA complexes. Here we report an asymmetric complex of the Type IIP restriction enzyme MspI in complex with its cognate recognition sequence. Unlike any other Type IIP enzyme reported to date, an MspI monomer and not a dimer binds to a palindromic DNA sequence. The enzyme makes specific contacts with all 4 base pairs in the recognition sequence, by six direct and five water-mediated hydrogen bonds and numerous van der Waal contacts. This MspI-DNA structure represents the first example of asymmetric recognition of a palindromic DNA sequence by two different structural motifs in one polypeptide. A few possible pathways are discussed for MspI to cut both strands of DNA, either as a monomer or dimer.


Assuntos
Sequência de Bases , DNA/metabolismo , Desoxirribonuclease HpaII/química , Desoxirribonuclease HpaII/genética , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Domínio Catalítico , Cristalografia por Raios X , Desoxirribonucleases de Sítio Específico do Tipo II/química , Dimerização , Ligação de Hidrogênio , Substâncias Macromoleculares , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína
6.
Biochemistry ; 43(14): 4313-22, 2004 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-15065875

RESUMO

Phage-encoded resolvase T7 endonuclease I is a structure-specific endonuclease. The enzyme acts on a broad spectrum of substrates with a variety of DNA structures. The enzyme is a dimer with two separated catalytic domains connected by an elongated beta-sheet bridge. The activities of enzymes with mutations in the beta-bridge segment were studied. Mutations that did not affect catalytic domain folding and function but did alter the relative positions of these domains retained catalytic activity but with altered specificity and metal ion dependence. Our results suggest that the enzyme recognizes its substrates by DNA conformation exclusion and offer a simple explanation for the broad substrate specificity of phage resolvase.


Assuntos
Bacteriófago T7/enzimologia , Bacteriófago T7/genética , Domínio Catalítico/genética , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Magnésio/química , Manganês/química , Mutagênese Sítio-Dirigida , Pareamento Incorreto de Bases/genética , Sítios de Ligação/genética , DNA Viral/genética , DNA Viral/metabolismo , Desoxirribonuclease I/biossíntese , Ativação Enzimática/genética , Regulação Viral da Expressão Gênica , Hidrólise , Modelos Químicos , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Especificidade por Substrato/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...