Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(4)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36850342

RESUMO

The thermal treatment of wood can improve the appearance of the wood product's surface, its dimensional stability, and resistance to fungal attacks. However, the heat treatment changes the technological properties of wood, making it a new engineering material. This work investigates the effect of the low-thermal treatment of birch wood (Betula pendula Roth.), European beech wood (Fagus sylvatica L.), and alder wood (Alnus glutinosa L.) on the fine dust particles creation during woodworking. The samples of thermally treated wood with temperatures commonly used for the change of wood colour (105, 125, and 135 °C) were compared with reference samples made of natural wood. All 12 variants of the tested woods were milled using the 5-axis CNC machining center (20 mm diamond cutter, rotational speed 18,000 rev·min-1, the depth of cut 3 mm, feed rates of 2, 4 and 6 m∙min-1). A sieving analysis method allowed measuring the dust particle size distributions in all dust samples. The experiment's result analysis points out that wood type, thermal treatment, and feed rate meaningfully affect the size distribution of dust particles. Compared to birch wood and beech wood, the milling of alder wood samples created a much higher content of the finest dust particles, with particle sizes smaller than 0.032 mm. Increased temperatures in thermal treatment increase the share of fine dust particles with sizes smaller than 0.125 mm, compared to wood in its natural state. Milling with a lower feed rate (2 m·min-1) creates finer dust than processing with higher feed rates (4 and 6 m·min-1). Generally, the milling of alder in a natural or thermally treated state is a source of fine dust particles, particularly at low feed speed-rate milling, compared to birch and beech wood. In general, these results indicate that the low temperature thermal treatment parameters attribute new technological properties to all thermally modified types of wood tested.

2.
Materials (Basel) ; 15(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35591566

RESUMO

The relationship between the conditions of the use of filter bags made of non-woven fabric and the separation efficiency of wood dust generated in a furniture factory was experimentally determined in the conditions of pulse-jet filtration using a pilot-scale baghouse as waste during the processing of wood composites. The experiments were carried out, and we describe the results of the experiment as consisting in assembling one type of filter bag in two dust extraction installations operating under different operating conditions in the same furniture factory. The filter bags working in the assumed time intervals were then tested for their separation efficiency using a stand for testing filtration processes on a pilot scale. The test results are presented in the form of graphs and tables describing both the characteristics of the dust extraction installations and the filter fabric used, as well as the separation efficiency of bags used at different times in different industrial operating conditions for each of them. The conducted research allowed us to recognize the phenomenon of filtration in relation to a very important value, which is the separating efficiency of dust extraction in various operating conditions of dust extraction installations in a furniture factory during the long-term use of filter fabrics. The obtained results allowed us to determine the separation efficiency for the tested bags at a level of over 99.99% and to state that this separation efficiency increased with the working time of the bag. The structure of the outlet dust from filters in the wood composites processing factory constitutes an element of the working environment if the purified air is returned in a recirculation circuit to the interior of the working area. Thanks to this, it is possible to predict the separation efficiency in the long-term use of filter dust collectors for wood dust in furniture factories.

3.
Artigo em Inglês | MEDLINE | ID: mdl-32106505

RESUMO

During production, thermally modified wood is processed using the same machining operations as unmodified wood. Machining wood is always accompanied with the creation of dust particles. The smaller they become, the more hazardous they are. Employees are exposed to a greater health hazard when machining thermally modified wood because a considerable amount of fine dust is produced under the same processing conditions than in the case of unmodified wood. The International Agency for Research on Cancer (IARC) states that wood dust causes cancer of the nasal cavity and paranasal sinuses and of the nasopharynx. Wood dust is also associated with toxic effects, irritation of the eyes, nose and throat, dermatitis, and respiratory system effects which include decreased lung capacity, chronic obstructive pulmonary disease, asthma and allergic reactions. In our research, granular composition of particles resulting from the process of longitudinal milling of heat-treated oak and spruce wood under variable conditions (i.e., the temperature of modification of 160, 180, 200 and 220 °C and feed rate of 6, 10 and 15 m.min-1) are presented in the paper. Sieve analysis was used to determine the granular composition of particles. An increase in fine particle fraction when the temperature of modification rises was confirmed by the research. This can be due to the lower strength of thermally modified wood. Moreover, a different effect of the temperature modification on granularity due to the tree species was observed. In the case of oak wood, changes occurred at a temperature of 160 °C and in the case of spruce wood, changes occurred at the temperatures of 200 and 220 °C. At the temperatures of modification of 200 and 220 °C, the dust fraction (i.e., that occurred in the mesh sieves, particles with the size ≤ 0.08 mm) ranged from 2.99% (oak wood, feed rate of 10 m.min-1) to 8.07% (spruce wood, feed rate of 6 m.min-1). Such particles might have a harmful effect on employee health in wood-processing facilities.


Assuntos
Poeira , Exposição Ocupacional/análise , Madeira , Humanos , Indústria Manufatureira
4.
Materials (Basel) ; 12(8)2019 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-31010011

RESUMO

The results of research into utilizing grinded beech bark in order to substitute commonly used fillers in urea formaldehyde (UF) adhesive mixtures to bond plywood are presented in the present study. Four test groups of plywood with various adhesive mixtures were manufactured under laboratory conditions and used for experimentation. Plywood made using the same technology, with the common filler (technical flour), was used as a reference material. Three different concentrations of grinded beech bark were used. The thermal conductivity of the fillers used, viscosity and its time dependence, homogeneity and the dispersion performance of fillers were evaluated in the analysis of adhesive mixture. The time necessary for heating up the material during the pressing process was a further tested parameter. The produced plywood was analyzed in terms of its modulus of elasticity, bending strength, perpendicular tensile strength and free formaldehyde emissions. Following the research results, beech bark can be characterized as an ecologically friendly alternative to technical flour, shortening the time of pressing by up to 27%. At the same time, in terms of the statistics, the mechanical properties and stability of the material changed insignificantly, and the formaldehyde emissions reduced significantly, by up to 74%. The utilization of bark was in compliance with long-term sustainability, resulting in a decrease in the environmental impact of waste generated during the wood processing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA