Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732072

RESUMO

Rheumatoid arthritis (RA) is a chronic inflammatory disease. Despite new methods of diagnostics and treatment as well as extensive biological and immunosuppressive treatment, the etiology of RA is not fully understood. Moreover, the problem of diagnosis and treatment of RA patients is still current and affects a large group of patients. It is suggested that endoplasmic reticulum (ER)-related features may impair adaptation to chronic stress, inferring the risk of rheumatoid arthritis. The main goal in this study was evaluation of changes in mRNA translation to determine chronic ER stress conditions in rheumatoid arthritis patients. The study group consist of 86 individuals including a total of 56 rheumatoid arthritis patients and 30 healthy controls. The expression level of mRNA form blood samples of RA patients as well as controls of the unfolded protein response (UPR)-associated genes (p-eIF2, BCL-2, PERK, ATF4, and BAX) were investigated using real-time qPCR. GAPDH expression was used as a standard control. Considering the median, the expression levels of PERK, BCL-2, p-eIF2, ATF4, and BAX were found to be significantly increased in the blood of RA patients compared with the control group. The p-value for the PERK gene was 0.0000000036, the p-value for the BCL-2 gene was 0.000000014, the p-value for the p-eIF2 gene was 0.006948, the p-value for the ATF4 gene was 0.0000056, and the p-value for the BAX gene was 0.00019, respectively. Thus, it can be concluded that the targeting of the components of the PERK-dependent UPR signaling pathway via small-molecule PERK inhibitors may contribute to the development of novel, innovative treatment strategies against rheumatoid arthritis.


Assuntos
Artrite Reumatoide , Estresse do Retículo Endoplasmático , Perfilação da Expressão Gênica , Resposta a Proteínas não Dobradas , eIF-2 Quinase , Humanos , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Artrite Reumatoide/sangue , Resposta a Proteínas não Dobradas/genética , Feminino , Masculino , Pessoa de Meia-Idade , Estresse do Retículo Endoplasmático/genética , eIF-2 Quinase/genética , eIF-2 Quinase/metabolismo , Adulto , Idoso , Fator 4 Ativador da Transcrição/metabolismo , Fator 4 Ativador da Transcrição/genética , Estudos de Casos e Controles , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator de Iniciação 2 em Eucariotos/metabolismo , Fator de Iniciação 2 em Eucariotos/genética
2.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003363

RESUMO

Multiple sclerosis (MS) is a chronic, autoimmune neurodegenerative disease affecting the central nervous system. It is a major cause of non-traumatic neurological disability among young adults in North America and Europe. This study focuses on neuroprotective genes (BDNF, NT4/5, SIRT1, HSP70, and HSP27). Gene expression and protein levels of these markers were compared between MS patients and healthy controls. Blood samples were collected from 42 patients with multiple sclerosis (MS) and 48 control subjects without MS. Quantitative real-time PCR was performed to measure the expression of specific genes. The samples were analyzed in duplicate, and the abundance of mRNA was quantified using the 2-ΔCt method. ELISA assay was used to measure the concentration of specific proteins in the plasma samples. The results show that a 3.5-fold decrease in the gene expression of BDNF corresponds to a 1.5-fold downregulation in the associated plasma protein concentration (p < 0.001). Similar trends were observed with NT-4 (five-fold decrease, slight elevation in protein), SIRT1 (two-fold decrease, two-fold protein decrease), HSP70 (four-fold increase, nearly two-fold protein increase), and HSP27 (four-fold increase, two-fold protein increase) (p < 0.001). This study reveals strong correlations between gene expression and protein concentration in MS patients, emphasizing the relevance of these neuroprotective markers in the disease.


Assuntos
Esclerose Múltipla , Doenças Neurodegenerativas , Adulto Jovem , Humanos , Esclerose Múltipla/genética , Esclerose Múltipla/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Choque Térmico HSP27 , Sirtuína 1/genética , RNA Mensageiro/genética , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas Sanguíneas
3.
Int J Mol Sci ; 24(18)2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37762229

RESUMO

Multiple sclerosis is a chronic demyelinating disorder with an unclear etiology. A key role is thought to be played by Th17 cells and microRNAs associated with Th17, such as miR-155, miR-326 and miR-223. The present study compared the methylation and hydroxymethylation levels of CpG sites within promoters of these microRNA between MS patients and controls using PBMCs and analyzed their relationship with microRNA expression. Significant intergroup differences were found between the levels of 5-hmC within the CpG-1 miR-155 promoter and CpG within the miR-326 promoter; in addition, miR-155-5p and miR-223-3p expression was elevated in MS patients. Correlation analysis showed a positive relationship between the level of 5-hmC of CpG-2 in the miR-223 promoter and miR-223-3p level. As it is possible to pharmacologically modulate the level of epigenetic modifications, our findings cast light on the etiology of MS and support the development of more effective therapies.


Assuntos
MicroRNAs , Esclerose Múltipla , Humanos , MicroRNAs/genética , Esclerose Múltipla/genética , Polônia , Citosina , Epigênese Genética
4.
Int J Mol Sci ; 24(16)2023 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-37629164

RESUMO

Attention deficit hyperactivity disorder (ADHD) is one of the most common neurodevelopmental disorders, although the aetiology of ADHD is not yet understood. One proposed theory for developing ADHD is N-methyl-D-aspartate receptors (NMDARs) dysfunction. NMDARs are involved in regulating synaptic plasticity and memory function in the brain. Abnormal expression or polymorphism of some genes associated with ADHD results in NMDAR dysfunction. Correspondingly, NMDAR malfunction in animal models results in ADHD-like symptoms, such as impulsivity and hyperactivity. Currently, there are no drugs for ADHD that specifically target NMDARs. However, NMDAR-stabilizing drugs have shown promise in improving ADHD symptoms with fewer side effects than the currently most widely used psychostimulant in ADHD treatment, methylphenidate. In this review, we outline the molecular and genetic basis of NMDAR malfunction and how it affects the course of ADHD. We also present new therapeutic options related to treating ADHD by targeting NMDAR.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Estimulantes do Sistema Nervoso Central , Metilfenidato , Animais , Transtorno do Deficit de Atenção com Hiperatividade/etiologia , Transtorno do Deficit de Atenção com Hiperatividade/genética , Receptores de N-Metil-D-Aspartato/genética , Metilfenidato/farmacologia , Metilfenidato/uso terapêutico , Encéfalo , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico
5.
Cells ; 12(14)2023 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-37508579

RESUMO

Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.


Assuntos
Neoplasias de Cabeça e Pescoço , MicroRNAs , RNA Longo não Codificante , Humanos , Neoplasias de Cabeça e Pescoço/diagnóstico , Neoplasias de Cabeça e Pescoço/genética , Biomarcadores , Biópsia Líquida , RNA Mensageiro , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno
6.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203531

RESUMO

Parkinson's disease (PD) is a complex neurodegenerative disease characterized by the progressive loss of dopaminergic neurons in the substantia nigra and the widespread accumulation of alpha-synuclein (αSyn) protein aggregates. αSyn aggregation disrupts critical cellular processes, including synaptic function, mitochondrial integrity, and proteostasis, which culminate in neuronal cell death. Importantly, αSyn pathology extends beyond neurons-it also encompasses spreading throughout the neuronal environment and internalization by microglia and astrocytes. Once internalized, glia can act as neuroprotective scavengers, which limit the spread of αSyn. However, they can also become reactive, thereby contributing to neuroinflammation and the progression of PD. Recent advances in αSyn research have enabled the molecular diagnosis of PD and accelerated the development of targeted therapies. Nevertheless, despite more than two decades of research, the cellular function, aggregation mechanisms, and induction of cellular damage by αSyn remain incompletely understood. Unraveling the interplay between αSyn, neurons, and glia may provide insights into disease initiation and progression, which may bring us closer to exploring new effective therapeutic strategies. Herein, we provide an overview of recent studies emphasizing the multifaceted nature of αSyn and its impact on both neuron and glial cell damage.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , alfa-Sinucleína , Neurônios Dopaminérgicos , Neuroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...