Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 387: 121529, 2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-31911385

RESUMO

In situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month. Abundances of xplA and xenB genes, respective indicators of KTR9 and Strain I-C, approached injection well cell densities at 6 m downgradient, whereas gene abundances (and conservative tracer) had begun to increase at 13 m downgradient at test conclusion. In situ push-pull tests were subsequently completed to measure RDX degradation rates in the bioaugmented wells under ambient gradient conditions. Time-series monitoring of RDX, RDX end-products, conservative tracer, xplA and xenB gene copy numbers and XplA and XenB protein abundance were used to assess the efficacy of bioaugmentation and to estimate the apparent first-order RDX degradation rates during each test. A collective evaluation of redox conditions, RDX end-products, varied RDX degradation kinetics, and biomarkers indicated that Strain I-C and KTR9 rapidly degraded RDX. Results showed bioaugmentation is a viable technology for accelerating RDX cleanup in the demonstration site aquifer and may be applicable to other sites. Full-scale implementation considerations are discussed.


Assuntos
Substâncias Explosivas/metabolismo , Triazinas/metabolismo , Poluentes Químicos da Água/metabolismo , Biodegradação Ambiental , Substâncias Explosivas/química , Bactéria Gordonia/metabolismo , Água Subterrânea/química , Cinética , Pseudomonas fluorescens/metabolismo , Triazinas/química , Poluentes Químicos da Água/química
2.
Appl Biochem Biotechnol ; 168(7): 1989-2003, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23093366

RESUMO

Laccases belong to the group of phenol oxidizes and constitute one of the most promising classes of enzymes for future use in various fields. For industrial and biotechnological purposes, laccases were among the first enzymes providing larger-scale applications such as removal of polyphenols or conversion of toxic compounds. The wood-degrading basidiomycete Cerrena unicolor C-139, reported in this study, is one of the high-laccase producers. In order to facilitate novel and more efficient biocatalytic process applications, there is a need for laccases with improved biochemical properties, such as thermostability or stability in broad ranges of pH. In this work, modifications of laccase isoforms by hydrophobization, hydrophilization, and polymerization were performed. The hydrophobized and hydrophilized enzyme showed enhanced surface activity and higher ranges of pH and temperatures in comparison to its native form. However, performed modifications did not appear to noticeably alter enzyme's native structure possibly due to the formation of coating by particles of saccharides around the molecule. Additionally, surface charge of modified laccase shifted towards the negative charge for the hydrophobized laccase forms. In all tested modifications, the size exclusion method led to average 80 % inhibition removal for hydrophilized samples after an hour of incubation with fluoride ions. Samples that were hydrophilized with lactose and cellobiose showed an additional 90 % reversibility of inhibition by fluoride ions after an hour of concluding the reaction and 40 % after 24 h. The hydrophobized laccase showed higher level of the reversibility after 1 h (above 80 %) and 24 h (above 70 %) incubation with fluoride ions. The addition of ascorbate to laccase solution before a fluoride spike resulted in more efficient reversibility of fluoride inhibitory effect in comparison to the treatments with reagents used in the reversed sequence.


Assuntos
Lacase/química , Polyporaceae/enzimologia , Reagentes de Ligações Cruzadas/farmacologia , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática , Glicosilação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lacase/antagonistas & inibidores , Lacase/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...