Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 31(Pt 1): 175-7, 2003 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-12546679

RESUMO

The sucrose non-fermenting 1 (Snf1) protein kinase of Saccharomyces cerevisiae is important for transcriptional, metabolic and developmental responses to glucose limitation. Here we discuss the role of the Snf1 kinase in regulating filamentous invasive growth. Haploid invasive growth occurs in response to glucose limitation and requires FLO11, a gene encoding a cell-surface adhesin. Snf1 regulates transcription of FLO11 by antagonizing the function of two repressors, Nrg1 and Nrg2. Snf1 and the Nrg repressors also affect diploid pseudohyphal differentiation, which is a response to nitrogen limitation, suggesting an unexpected signalling role for the Snf1 kinase.


Assuntos
Proteínas Serina-Treonina Quinases/fisiologia , Saccharomyces cerevisiae/enzimologia , Diferenciação Celular , Proteínas de Ligação a DNA , Glucose/metabolismo , Glicoproteínas de Membrana , Proteínas de Membrana/fisiologia , Modelos Biológicos , Nitrogênio/metabolismo , Ploidias , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
2.
Mol Cell Biol ; 21(17): 5790-6, 2001 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-11486018

RESUMO

Sip4 is a Zn(2)Cys(6) transcriptional activator that binds to the carbon source-responsive elements of gluconeogenic genes in Saccharomyces cerevisiae. The Snf1 protein kinase interacts with Sip4 and regulates its phosphorylation and activator function in response to glucose limitation; however, evidence suggested that another kinase also regulates Sip4. Here we examine the role of the Srb10 kinase, a component of the RNA polymerase II holoenzyme that has been primarily implicated in transcriptional repression but also positively regulates Gal4. We show that Srb10 is required for phosphorylation of Sip4 during growth in nonfermentable carbon sources and that the catalytic activity of Srb10 stimulates the ability of LexA-Sip4 to activate transcription of a reporter. Srb10 and Sip4 coimmunoprecipitate from cell extracts and interact in two-hybrid assays, suggesting that Srb10 regulates Sip4 directly. We also present evidence that the Srb10 and Snf1 kinases interact with different regions of Sip4. These findings support the view that the Srb10 kinase not only plays negative roles in transcriptional control but also has broad positive roles during growth in carbon sources other than glucose.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Proteínas de Saccharomyces cerevisiae , Transativadores/metabolismo , Dedos de Zinco , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Proteínas Fúngicas/metabolismo , Glucose/metabolismo , Mutagênese , Fosforilação , Testes de Precipitina , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/genética , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
3.
Genetics ; 158(2): 563-72, 2001 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-11404322

RESUMO

The Snf1 protein kinase is essential for the transcription of glucose-repressed genes in Saccharomyces cerevisiae. We identified Nrg2 as a protein that interacts with Snf1 in the two-hybrid system. Nrg2 is a C(2)H(2) zinc-finger protein that is homologous to Nrg1, a repressor of the glucose- and Snf1-regulated STA1 (glucoamylase) gene. Snf1 also interacts with Nrg1 in the two-hybrid system and co-immunoprecipitates with both Nrg1 and Nrg2 from cell extracts. A LexA fusion to Nrg2 represses transcription from a promoter containing LexA binding sites, indicating that Nrg2 also functions as a repressor. An Nrg1 fusion to green fluorescent protein is localized to the nucleus, and this localization is not regulated by carbon source. Finally, we show that VP16 fusions to Nrg1 and Nrg2 allow low-level expression of SUC2 in glucose-grown cells, and we present evidence that Nrg1 and Nrg2 contribute to glucose repression of the DOG2 gene. These results suggest that Nrg1 and Nrg2 are direct or indirect targets of the Snf1 kinase and function in glucose repression of a subset of Snf1-regulated genes.


Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Carbono/metabolismo , Domínio Catalítico , Núcleo Celular/metabolismo , Primers do DNA/metabolismo , Proteínas de Ligação a DNA , Ativação Enzimática , Glucana 1,4-alfa-Glucosidase/genética , Glucose/metabolismo , Immunoblotting , Dados de Sequência Molecular , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Monoéster Fosfórico Hidrolases/metabolismo , Plasmídeos/metabolismo , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/genética , Técnicas do Sistema de Duplo-Híbrido , beta-Galactosidase/metabolismo
4.
Genes Dev ; 15(9): 1104-14, 2001 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-11331606

RESUMO

The Snf1/AMP-activated protein kinase family has broad roles in transcriptional, metabolic, and developmental regulation in response to stress. In Saccharomyces cerevisiae, Snf1 is required for the response to glucose limitation. Snf1 kinase complexes contain the alpha (catalytic) subunit Snf1, one of the three related beta subunits Gal83, Sip1, or Sip2, and the gamma subunit Snf4. We present evidence that the beta subunits regulate the subcellular localization of the Snf1 kinase. Green fluorescent protein fusions to Gal83, Sip1, and Sip2 show different patterns of localization to the nucleus, vacuole, and/or cytoplasm. We show that Gal83 directs Snf1 to the nucleus in a glucose-regulated manner. We further identify a novel signaling pathway that controls this nuclear localization in response to glucose phosphorylation. This pathway is distinct from the glucose signaling pathway that inhibits Snf1 kinase activity and responds not only to glucose but also to galactose and sucrose. Such independent regulation of the localization and the activity of the Snf1 kinase, combined with the distinct localization of kinases containing different beta subunits, affords versatility in regulating physiological responses.


Assuntos
Proteínas de Transporte , Núcleo Celular/metabolismo , Glucose/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras , Proteínas de Saccharomyces cerevisiae , Transdução de Sinais , Transativadores , Proteínas Quinases Ativadas por AMP , Carbono/metabolismo , Divisão Celular , Fermentação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Galactose/metabolismo , Hexoquinase/genética , Hexoquinase/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Subunidades Proteicas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Frações Subcelulares , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Proc Natl Acad Sci U S A ; 97(14): 7916-20, 2000 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-10869433

RESUMO

RNA polymerase II holoenzymes respond to activators and repressors that are regulated by signaling pathways. Here we present evidence for a "shortcut" mechanism in which the Snf1 protein kinase of the glucose signaling pathway directly regulates transcription by the yeast holoenzyme. In response to glucose limitation, the Snf1 kinase stimulates transcription by holoenzyme that has been artificially recruited to a reporter by a LexA fusion to a holoenzyme component. We show that Snf1 interacts physically with the Srb/mediator proteins of the holoenzyme in both two-hybrid and coimmunoprecipitation assays. We also show that a catalytically hyperactive Snf1, when bound to a promoter as a LexA fusion protein, activates transcription in a glucose-regulated manner; moreover, this activation depends on the integrity of the Srb/mediator complex. These results suggest that direct regulatory interactions between signal transduction pathways and RNA polymerase II holoenzyme provide a mechanism for transcriptional control in response to important signals.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Transativadores , Proteínas de Bactérias/metabolismo , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Glucose/farmacologia , Holoenzimas/metabolismo , Complexo Mediador , Modelos Genéticos , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Serina Endopeptidases/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ativação Transcricional , Técnicas do Sistema de Duplo-Híbrido
6.
Mol Cell Biol ; 18(11): 6273-80, 1998 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9774644

RESUMO

In glucose-grown cells, the Mig1 DNA-binding protein recruits the Ssn6-Tup1 corepressor to glucose-repressed promoters in the yeast Saccharomyces cerevisiae. Previous work showed that Mig1 is differentially phosphorylated in response to glucose. Here we examine the role of Mig1 in regulating repression and the role of the Snf1 protein kinase in regulating Mig1 function. Immunoblot analysis of Mig1 protein from a snf1 mutant showed that Snf1 is required for the phosphorylation of Mig1; moreover, hxk2 and reg1 mutations, which relieve glucose inhibition of Snf1, correspondingly affect phosphorylation of Mig1. We show that Snf1 and Mig1 interact in the two-hybrid system and also coimmunoprecipitate from cell extracts, indicating that the two proteins interact in vivo. In immune complex assays of Snf1, coprecipitating Mig1 is phosphorylated in a Snf1-dependent reaction. Mutation of four putative Snf1 recognition sites in Mig1 eliminated most of the differential phosphorylation of Mig1 in response to glucose in vivo and improved the two-hybrid interaction with Snf1. These studies, together with previous genetic findings, indicate that the Snf1 protein kinase regulates phosphorylation of Mig1 in response to glucose.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteínas Nucleares , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Genes Reporter , Glucose/farmacologia , Mutagênese Sítio-Dirigida/genética , Fosforilação , Testes de Precipitina , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/metabolismo , Serina Endopeptidases/genética
7.
Mol Cell Biol ; 18(3): 1163-71, 1998 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9488431

RESUMO

The Srb10-Srb11 protein kinase of Saccharomyces cerevisiae is a cyclin-dependent kinase (cdk)-cyclin pair which has been found associated with the carboxy-terminal domain (CTD) of RNA polymerase II holoenzyme forms. Previous genetic findings implicated the Srb10-Srb11 kinase in transcriptional repression. Here we use synthetic promoters and LexA fusion proteins to test the requirement for Srb10-Srb11 in repression by Ssn6-Tup1, a global corepressor. We show that srb10delta and srb11delta mutations reduce repression by DNA-bound LexA-Ssn6 and LexA-Tup1. A point mutation in a conserved subdomain of the kinase similarly reduced repression, indicating that the catalytic activity is required. These findings establish a functional link between Ssn6-Tup1 and the Srb10-Srb11 kinase in vivo. We also explored the relationship between Srb10-Srb11 and CTD kinase I (CTDK-I), another member of the cdk-cyclin family that has been implicated in CTD phosphorylation. We show that mutation of CTK1, encoding the cdk subunit, causes defects in transcriptional repression by LexA-Tup1 and in transcriptional activation. Analysis of the mutant phenotypes and the genetic interactions of srb10delta and ctk1A suggests that the two kinases have related but distinct roles in transcriptional control. These genetic findings, together with previous biochemical evidence, suggest that one mechanism of repression by Ssn6-Tup1 involves functional interaction with RNA polymerase II holoenzyme.


Assuntos
Proteínas de Ligação a DNA , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas Nucleares , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Ciclinas , Proteínas Fúngicas/genética , Glicosídeo Hidrolases/genética , Hidroliases/genética , Óperon Lac , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/metabolismo , Serina Endopeptidases/genética , Transcrição Gênica , beta-Frutofuranosidase
8.
Aviakosm Ekolog Med ; 32(6): 36-42, 1998.
Artigo em Russo | MEDLINE | ID: mdl-9934441

RESUMO

According to the previous study [2], simulation of the physiological effects of weightlessness leads to deconditioning of the respiratory muscles which, in its turn, may be a factor impacting the aerobic working capacity. In the present work the experimental findings laid the basis for a physiological concept for medical/engineering requirements to countermeasures against deconditioning of the respiratory muscles, designing and laboratory and physiological testing of a prototype of training loading vest Elastik-R. The vest was shown to enhance speed and force qualities of the respiratory muscles in training athletes, to improve ventilation and gas-exchange functions of the lung, and to increase physical performance and aerobic capacity. Recommendations on utilization of the Elastik-R vest during space flight have been issued.


Assuntos
Exercício Físico/fisiologia , Hipocinesia/prevenção & controle , Músculos Respiratórios/fisiopatologia , Ausência de Peso , Avaliação da Capacidade de Trabalho , Adolescente , Adulto , Aerobiose/fisiologia , Medicina Aeroespacial , Seguimentos , Humanos , Hipocinesia/metabolismo , Hipocinesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Testes de Função Respiratória , Músculos Respiratórios/metabolismo
9.
Yeast ; 12(13): 1297-300, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8923734

RESUMO

Three regulatory genes, known to be required for glucose repression/derepression of some genes in Saccharomyces cerevisiae, were disrupted to study their effects on the carbon-source regulation of the STA2 glucoamylase gene expression. Using a STA2-lacZ fusion it was found that: (1) the MIG1 gene is dispensable for the repression of the STA2 gene; (2) there are two components in the carbon-source repression of STA2: HXK2-dependent and HXK2-independent; and (3) the HAP2 gene seems to be involved in repression rather than activation of the STA2 expression.


Assuntos
Fator de Ligação a CCAAT , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/genética , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Saccharomyces cerevisiae/genética , Alelos , Proteínas de Ligação a DNA/genética , Proteínas Fúngicas/genética , Glucose/metabolismo , Óperon Lac , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/genética
10.
Mol Cell Biol ; 16(1): 115-20, 1996 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-8524287

RESUMO

The RNA polymerase II of Saccharomyces cerevisiae exists in holoenzyme forms containing a complex, known as the mediator, associated with the carboxyl-terminal domain. The mediator includes several SRB proteins and is required for transcriptional activation. Previous work showed that a cyclin-dependent kinase-cyclin pair encoded by SSN3 and SSN8, two members of the SSN suppressor family, are identical to two SRB proteins in the mediator. Here we have identified the remaining SSN genes by cloning and genetic analysis. SSN2 and SSN5 are identical to SRB9 and SRB8, respectively, which encode additional components of the mediator. Genetic evidence implicates the SSN genes in transcriptional repression. Thus, these identities provide genetic insight into mediator and carboxyl-terminal domain function, strongly suggesting a role in mediating transcriptional repression as well as activation. We also show that SSN4 and SSN7 are the same as SIN4 and ROX3, respectively, raising the possibility that these genes also encode mediator proteins.


Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Primers do DNA/genética , DNA Fúngico/genética , Proteínas Fúngicas/metabolismo , Complexo Mediador , Dados de Sequência Molecular , Mutação , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Supressão Genética , Transativadores/genética , Transativadores/metabolismo
11.
Proc Natl Acad Sci U S A ; 92(9): 4006-10, 1995 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-7732022

RESUMO

The SSN3 and SSN8 genes of Saccharomyces cerevisiae were identified by mutations that suppress a defect in SNF1, a protein kinase required for release from glucose repression. Mutations in SSN3 and SSN8 also act synergistically with a mutation of the MIG1 repressor protein to relieve glucose repression. We have cloned the SSN3 and SSN8 genes. SSN3 encodes a cyclin-dependent protein kinase (cdk) homolog and is identical to UME5. SSN8 encodes a cyclin homolog 35% identical to human cyclin C. SSN3 and SSN8 fusion proteins interact in the two-hybrid system and coimmunoprecipitate from yeast cell extracts. Using an immune complex assay, we detected protein kinase activity that depends on both SSN3 and SSN8. Thus, the two SSN proteins are likely to function as a cdk-cyclin pair. Genetic analysis indicates that the SSN3-SSN8 complex contributes to transcriptional repression of diversely regulated genes and also affects induction of the GAL1 promoter.


Assuntos
Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Clonagem Molecular , Quinase 8 Dependente de Ciclina , Quinases Ciclina-Dependentes/genética , Ciclinas/genética , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Drosophila , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , Proteínas Serina-Treonina Quinases/genética , Mapeamento por Restrição , Homologia de Sequência de Aminoácidos , Fatores de Transcrição , Transcrição Gênica , beta-Galactosidase/biossíntese
12.
Yeast ; 9(5): 533-41, 1993 May.
Artigo em Inglês | MEDLINE | ID: mdl-8322516

RESUMO

A diastatic strain of Saccharomyces cerevisiae producing the STA2-encoded extracellular glucoamylase (GA) in a pronounced glucose-repressible fashion was used as a parent for generating mutants with reduced GA activity under normal conditions of derepression. In addition to mutations in STA2, five other recessive mutations were identified which fell into four complementation groups designated haf1 through haf4. RNA blot analysis suggested that the haf mutations confer defects in STA2 transcription. The haf mutants were pleiotropically defective in utilization of alternative carbon sources and resembled the snf (sucrose non-fermenting) mutants identified previously as unable to derepress the expression of the SUC2 gene encoding invertase. We present evidence strongly suggesting that haf1 = snf2, haf3 = snf1 and haf4 = snf5. By phenotypic criteria, the postulated HAF2 gene (which is none of the SNF genes tested) appears to be similar to SNF2, SNF5 and SNF6, and is possibly a non-redundant extension of this group of functionally related SNF genes.


Assuntos
Genes Fúngicos , Glucana 1,4-alfa-Glucosidase/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Fúngicos/efeitos dos fármacos , Teste de Complementação Genética , Ligação Genética , Glucana 1,4-alfa-Glucosidase/biossíntese , Glucose/farmacologia , Mutação , Fenótipo , RNA Fúngico/genética , RNA Mensageiro/genética , Saccharomyces cerevisiae/efeitos dos fármacos
13.
Yeast ; 7(2): 119-25, 1991 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-2063624

RESUMO

Three modes of production of the extracellular glucoamylase (GA) in Saccharomyces cerevisiae have been identified; repressed, basal and induced. The repressed mode is found with cells grown in rich media containing non-limiting concentrations of monosaccharides or disaccharides, including GA-hydrolysable maltose, as a sole carbon source. Both the basal and the induced modes (spanned by some seven-fold differences in the rate of GA production) can be displayed by either glucose-limited or glycerol-plus ethanol-consuming cultures; the induced mode is switched over to the basal one due to a feed-back inhibition by extracellularly accumulated GA. It is proposed that the feed-back control involved in GA production can be attenuated by starch which can thus 'induce' higher rates of GA production compared to the basal mode.


Assuntos
Regulação Fúngica da Expressão Gênica , Glucana 1,4-alfa-Glucosidase/biossíntese , Saccharomyces cerevisiae/genética , Amilose/metabolismo , Indução Enzimática , Repressão Enzimática , Etanol/metabolismo , Retroalimentação , Glucana 1,4-alfa-Glucosidase/genética , Glucose/metabolismo , Glicerol/metabolismo , Glicosídeo Hidrolases/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , beta-Frutofuranosidase
14.
Mol Gen Mikrobiol Virusol ; (5): 27-9, 1990 May.
Artigo em Russo | MEDLINE | ID: mdl-2199827

RESUMO

Seven mutants of Saccharomyces cerevisiae deficient in production of extracellular glucoamylase have been analyzed. For each of the seven a monogenic pattern of inheriting the mutant phenotype has been observed. The mutations have been shown to map within five different genetic loci, three independent mutations affecting the STA2 locus and the other four residing in four formerly unidentified genes. As expected, the sta2 mutants recover the wild phenotype when transformed with a STA2-bearing multicopy plasmid. Such reversion has also been observed for the transformed stall mutant. Unlike the others, the sta16 mutant is unable to secrete heterologous alpha-amylase encoded by a plasmid-borne DNA fragment. All the mutants have a moderately reduced ability to secrete the invertase and acid phosphatase.


Assuntos
Sequência de Bases , Análise Mutacional de DNA , DNA Fúngico/genética , Saccharomyces cerevisiae/metabolismo , Amido/metabolismo , Genótipo , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...