Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(23)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38063692

RESUMO

The growing demand for new energy sources governs the intensive research into CO2 hydrogenation to methanol, a valuable liquid fuel. Recently, indium-based catalysts have shown promise in this reaction, but they are plagued by shortcomings such as structural instability during the reaction and low selectivity. Here, we report a new strategy of controlling the selectivity and stability of bimetallic magnetically recoverable indium-based catalysts deposited onto a solid support. This was accomplished by the introduction of a structural promoter: a branched pyridylphenylene polymer (PPP). The selectivity of methanol formation for this catalyst reached 98.5%, while in the absence of PPP, the catalysts produced a large amount of methane, and the selectivity was about 70.2%. The methanol production rate was higher by a factor of twelve compared to that of a commercial Cu-based catalyst. Along with tuning selectivity, PPP allowed the catalyst to maintain a high stability, enhancing the CO2 sorption capacity and the protection of In against sintering and over-reduction. A careful evaluation of the structure-activity relationships allowed us to balance the catalyst composition with a high level of structural control, providing synergy between the support, magnetic constituent, catalytic species, and the stabilizing polymer layer. We also uncovered the role of each component in the ultimate methanol activity and selectivity.

2.
Polymers (Basel) ; 15(9)2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37177207

RESUMO

Development of new microporous organic polymers attracts significant attention due to a wide scope of promising applications. In addition, the synthesis of soluble, non-crosslinking polymers of high surface area and uniform microporosity is very challenging, and the methods for soluble microporous polymers formation are rather limited. In this work, we report a new approach to construct porous polyphenylenes which employs the Diels-Alder polycondensation of multifunctional ethynyl-containing monomers of different spatial architecture with bis(cyclopentadienone)s. The resulting polymers were soluble in common organic solvents, and their structure and properties were assessed by NMR, TGA, DSC, and SEC studies. The polymers demonstrated a specific surface area up to 751 m2·g-1 and ultramicroporous (pore size ≤ 0.6 nm) structure. N2 and CO2 adsorption-desorption data revealed that porosity parameters, e.g., specific surface area and pore sizes, can be tuned selectively by varying the type of monomers and reaction conditions.

3.
Int J Mol Sci ; 23(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36430353

RESUMO

Heat-up and hot-injection methods were employed to synthesize Ni nanoparticles (NPs) with narrow size distribution in the presence of hyperbranched pyridylphenylene polymer (PPP) as a stabilizing agent. It was shown that depending on the synthetic method, Ni NPs were formed either in a cross-linked polymer network or stabilized by a soluble hyperbranched polymer. Ni NPs were characterized by a combination of transmission electron microscopy (TEM), scanning TEM, thermogravimetric analysis, powder X-ray diffraction, X-ray photoelectron spectroscopy, energy dispersive X-ray analysis, and magnetic measurements. The architecture of polymer support was found to significantly effect Ni NPs characteristics and behavior. The Ni NPs demonstrated a high catalytic activity in a model Suzuki-Miyaura cross-coupling reaction. No significant drop in activity was observed upon repeated use after magnetic separation in five consecutive catalytic cycles. We believe that hyperbranched PPP can serve as universal platform for the controllable synthesis of Ni NPs, acting as highly active and stable catalysts.


Assuntos
Nanopartículas , Polímeros , Oxirredução , Catálise , Nanopartículas/química , Microscopia Eletrônica de Transmissão e Varredura
4.
Int J Mol Sci ; 23(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35054984

RESUMO

Hydrogenation of levulinic acid (LA) obtained from cellulose biomass is a promising path for production of γ-valerolactone (GVL)-a component of biofuel. In this work, we developed Ru nanoparticle containing nanocomposites based on hyperbranched pyridylphenylene polymer, serving as multiligand and stabilizing matrix. The functionalization of the nanocomposite with sulfuric acid significantly enhances the activity of the catalyst in the selective hydrogenation of LA to GVL and allows the reaction to proceed under mild reaction conditions (100 °C, 2 MPa of H2) in water and low catalyst loading (0.016 mol.%) with a quantitative yield of GVL and selectivity up to 100%. The catalysts were successfully reused four times without a significant loss of activity. A comprehensive physicochemical characterization of the catalysts allowed us to assess structure-property relationships and to uncover an important role of the polymeric support in the efficient GVL synthesis.


Assuntos
Lactonas/química , Ácidos Levulínicos/química , Polímeros/química , Rutênio/química , Catálise , Celulose/química , Hidrogenação , Estrutura Molecular , Análise Espectral , Temperatura
5.
Nanomaterials (Basel) ; 11(12)2021 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-34947694

RESUMO

Carbon-carbon cross-coupling reactions are among the most important synthetic tools for the preparation of pharmaceuticals and bioactive compounds. However, these reactions are normally carried out using copper, phosphines, and/or amines, which are poisonous for pharmaceuticals. The use of nanocomposite catalysts holds promise for facilitating these reactions and making them more environmentally friendly. In the present work, the PEGylated (PEG stands for poly(ethylene glycol) pyridylphenylene dendrons immobilized on silica loaded with magnetic nanoparticles have been successfully employed for the stabilization of Pd2+ complexes and Pd nanoparticles. The catalyst developed showed excellent catalytic activity in copper-free Sonogashira and Heck cross-coupling reactions. The reactions proceeded smoothly in green solvents at low palladium loading, resulting in high yields of cross-coupling products (from 80% to 97%) within short reaction times. The presence of magnetic nanoparticles allows easy magnetic separation for repeated use without a noticeable decrease of catalytic activity due to the strong stabilization of Pd species by rigid and bulky dendritic ligands. The PEG dendron periphery makes the catalyst hydrophilic and better suited for green solvents. The minor drop in activity upon the catalyst reuse is explained by the formation of Pd nanoparticles from the Pd2+ species during the catalytic reaction. The magnetic separation and reuse of the nanocomposite catalyst reduces the cost of target products as well as energy and material consumption and diminishes residual contamination by the catalyst. These factors as well as the absence of copper in the catalyst makeup pave the way for future applications of such catalysts in cross-coupling reactions.

6.
ACS Appl Mater Interfaces ; 12(19): 22170-22178, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32320210

RESUMO

Here, for the first time, we developed a catalytic composite by forming a thin layer of a cross-linked hyperbranched pyridylphenylene polymer (PPP) on the surface of mesoporous magnetic silica (Fe3O4-SiO2, MS) followed by complexation with Pd species. The interaction of Pd acetate (PdAc) with pyridine units of the polymer results in the formation of Pd2+ complexes which are evenly distributed through the PPP layer. The MS-PPP-PdAc catalyst was tested in the Suzuki-Miyaura cross-coupling reaction with four different para-Br-substituted arenes, demonstrating enhanced catalytic properties for substrates containing electron withdrawing groups, and especially, for 4-bromobenzaldehyde. In this case, 100% selectivity and conversion were achieved with TOF of >23 000 h-1 at a very low Pd loading (0.032 mol %), a remarkable performance in this reaction. We believe these exceptional catalytic properties are due to the hyperbranched polymer architecture, which allows excellent stabilization of catalytic species as well as a favorable space for reacting molecules. Additionally, the magnetic character of the support allows for easy magnetic separation during the catalyst synthesis, purification, and reuse, resulting in energy and materials savings. These factors and excellent reusability of MS-PPP-PdAc in five consecutive uses make this catalyst promising for a variety of catalytic reactions.

7.
ACS Appl Mater Interfaces ; 9(3): 2285-2294, 2017 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-28029247

RESUMO

A new family of Ni-, Co-, and Cr-doped Zn-containing magnetic oxide nanoparticles (NPs) stabilized by polyphenylquinoxaline (PPQ) and hyperbranched pyridylphenylene polymer (PPP) has been developed. These NPs have been synthesized by thermal decomposition of Zn and doping metal acetylacetonates in the reaction solution of preformed magnetite NPs, resulting in single-crystal NPs with spinel structure. For the PPQ-capped NPs, it was demonstrated that all three types of metal species (Fe, Zn, and a doping metal) reside within the same NPs, the surface of which is enriched with Zn and a doping metal, while the deeper layers are enriched with Fe. The Cr-doped NPs at the high Cr loading are an exception due to favored deposition of Cr on magnetite located in the NP depth. The PPP-capped NPs exhibit similar morphology and crystallinity; however, the detailed study of the NP composition was barred due to the high PPP amount retained on the NP surface. The catalyst testing in syngas conversion to methanol demonstrated outstanding catalytic properties of doped Zn-containing magnetic oxides, whose activities are dependent on the doping metal content and on the stabilizing polymer. The PPP stabilization allows for better access to the catalytic species due to the open and rigid polymer architecture and most likely optimized distribution of doping species. Repeat experiments carried out after magnetic separation of catalysts from the reaction mixture showed excellent catalyst stability even after five consecutive catalytic runs.

8.
ACS Appl Mater Interfaces ; 8(1): 891-9, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26673012

RESUMO

Here we developed a new family of Zn-containing magnetic oxides of different structures by thermal decomposition of Zn(acac)2 in the reaction solution of preformed magnetite nanoparticles (NPs) stabilized by polyphenylquinoxaline. Upon an increase of the Zn(acac)2 loading from 0.15 to 0.40 mmol (vs 1 mmol of Fe(acac)3), the Zn content increases, and the Zn-containing magnetic oxide NPs preserve a spinel structure of magnetite and an initial, predominantly multicore NP morphology. X-ray photoelectron spectroscopy (XPS) of these samples revealed that the surface of iron oxide NPs is enriched with Zn, although Zn species were also found deep under the iron oxide NP surface. For all the samples, XPS also demonstrates the atom ratio of Fe(3+)/Fe(2+) = 2:1, perfectly matching Fe3O4, but not ZnFe2O4, where Fe(2+) ions are replaced with Zn(2+). The combination of XPS with other physicochemical methods allowed us to propose that ZnO forms an ultrathin amorphous layer on the surface of iron oxide NPs and also diffuses inside the magnetite crystals. At higher Zn(acac)2 loading, cubic ZnO nanocrystals coexist with magnetite NPs, indicating a homogeneous nucleation of the former. The catalytic testing in syngas conversion to methanol demonstrated outstanding catalytic properties of Zn-containing magnetic oxides, whose activities are dependent on the Zn loading. Repeat experiments carried out with the best catalyst after magnetic separation showed remarkable catalyst stability even after five consecutive catalytic runs.

9.
Langmuir ; 30(28): 8543-50, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24963746

RESUMO

We report the formation of multicore iron oxide mesocrystals using the thermal decomposition of iron acetyl acetonate in the presence of the multifunctional and rigid poly(phenylenepyridyl) dendron and dendrimer. We thoroughly analyze the influence of capping molecules of two different architectures and demonstrate for the first time that dendron/dendrimer self-assembly leads to multicore morphologies. Single-crystalline ordering in multicore NPs leads to cooperative magnetic behavior: mesocrystals exhibit ambient blocking temperatures, allowing subtle control over magnetic properties using a minor temperature change.


Assuntos
Antracenos/química , Dendrímeros/química , Compostos Férricos/química , Temperatura
10.
Nanoscale ; 4(7): 2378-86, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22374388

RESUMO

Semiconductor nanoparticles (NPs) are being actively explored for applications in medical diagnostics and therapy and numerous electronic devices including solar cells. In this paper we demonstrate the influence of the third generation rigid polyphenylenepyridyl dendrimers (PPPDs) of a different architecture on the formation of well-defined CdS NPs. A high temperature approach to the synthesis of novel CdS/PPPD nanocomposites is feasible due to the high thermal stability of PPPDs. The PPPD architecture affects the CdS NP formation: larger NPs are obtained in the presence of dendrimers with 1,3,5-triphenylbenzene cores compared to those with tetrakis(4-ethynylphen-1-yl)methane cores. The reaction conditions such as concentrations of PPPDs and NP precursors and the temperature regime also influence the CdS NP sizes. For the first time, we elucidated a mechanism of CdS NP formation in a non-coordinating solvent through the CdO redispersion in the presence of PPPDs. Interesting optical properties of these CdS/PPPD nanocomposites make them promising candidates for imaging applications.


Assuntos
Compostos de Cádmio/química , Dendrímeros/farmacologia , Excipientes/farmacologia , Polímeros/química , Piridinas/farmacologia , Sulfatos/química , Compostos de Cádmio/síntese química , Catálise/efeitos dos fármacos , Dendrímeros/química , Excipientes/química , Modelos Biológicos , Conformação Molecular , Nanocompostos/química , Óptica e Fotônica , Tamanho da Partícula , Polímeros/farmacologia , Piridinas/química , Pontos Quânticos , Sulfatos/síntese química , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...