Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 11(1)2018 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-29462988

RESUMO

Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.

2.
Mol Cell Biochem ; 356(1-2): 83-90, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21750981

RESUMO

Protein kinase CK2 is emerging as a target in neoplastic diseases. Inhibition of CK2 by small compounds could lead to new therapies by counteracting the elevated CK2 activities found in a variety of tumors. Currently, CK2 inhibitors are primarily evaluated by a radiometric in vitro assay tracing the amount of transferred γ-(32)P from ATP to a substrate peptide. Here, we present two alternative assays abandoning radioisotopes. The first assay is based on Förster resonance energy transfer between the fluorescence donor EDANS and the acceptor molecule DABCYL within the CK2 substrate peptide [DABCYL]-RRRDDDSDDD-[EDANS]. This peptide comprises a cleavage site for pancreatic elastase, which is located next to the phosphate acceptor serine. Only the non-phosphorylated peptide can be cleaved by elastase, disrupting the FRET effect. Thus fluorescence intensity is inversely correlated with CK2 activity. The second non-radiometric assay deploys the changing of charge that occurs within the peptide substrate RRRDDDSDDD upon phosphorylation by CK2. Substrate and product of a CK2 reaction consequently show a difference in electrophoretic mobility and thus can be separated by capillary electrophoresis. Absorption detection enabled quantification of both peptide species and allowed the determination of IC(50) values. This method facilitated the testing of a small compound library by which benzofuran derivatives were identified as potent CK2 inhibitors with IC(50) values in the submicromolar range.


Assuntos
Benzofuranos/química , Bioensaio/métodos , Caseína Quinase II/antagonistas & inibidores , Inibidores de Proteínas Quinases/análise , Inibidores de Proteínas Quinases/farmacologia , Radiometria/métodos , Sequência de Aminoácidos , Animais , Caseína Quinase II/metabolismo , Avaliação Pré-Clínica de Medicamentos , Eletroforese Capilar , Transferência Ressonante de Energia de Fluorescência , Holoenzimas/metabolismo , Humanos , Dados de Sequência Molecular , Peptídeos/química , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Especificidade por Substrato/efeitos dos fármacos , Sus scrofa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...