Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122149, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36470089

RESUMO

Type I Diabetes is a multisystem disease that causes alterations in carbohydrate, protein, and fat metabolisms due to hyperglycemia. It has an extensive pathology, especially the mechanism involving oxidative stress is still complex. Type I diabetes is correlated with increased formation of free radicals and decreased levels of antioxidant potential. Vitamin C (Vit C) is a powerful antioxidant that participates in antioxidant defense, protecting lipid membranes and proteins from oxidative damage by donating electrons to free radicals. The effect of type I diabetes and the recovery role of Vit C on the structure and composition of the biomolecular content of testicular tissue is still unknown. Therefore, the current study aimed to investigate the alterations in the biomolecules of rat testes due to Streptozotocin (STZ)-induced type I diabetes using Attenuated Total Reflectance (ATR)-Fourier Transform Infrared (FTIR) spectroscopy and histological staining. The results revealed that the biomolecular structure and composition of testicular tissue are highly affected due to the development of diabetes. We obtained decreased saturation levels and increased unsaturation index in the lipids indicating the presence of lipid peroxidation in the diabetic state. The elevated lipid peroxidation levels have been implicated in the pathogenesis of naturally occurring and chemically induced diabetes. On the other hand, the protein content of diabetic rat testicular tissue was shown to decrease considerably, indicating an increase in proteolysis processes. Supporting the ratio of protein structural and conformational change, protein secondary structural components were also found to alter substantially in the diabetic state. Diabetes was also shown to lead to a decrease in the content of nucleic acids compared to proteins. These diabetes-induced alterations were found to be substantially recovered with the administration of Vit C. Although different doses and administration types of Vit C have been reported in the literature, there is no consensus yet. Therefore, we used three different doses of Vit C in our study as high (100 mg/kg/day), medium (50 mg/kg/day) and low (15 mg/kg/day) doses intraperitoneally in the present study, and the medium dose was found to be the most effective in the recovery from the diabetes-induced structural damages on rat testicular tissue. Vit C may have a therapeutic effect to be used as a complementary therapy in the treatment of diabetes.


Assuntos
Antioxidantes , Diabetes Mellitus Experimental , Ratos , Animais , Antioxidantes/química , Ácido Ascórbico/farmacologia , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Estresse Oxidativo , Vitaminas , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo
2.
Biochim Biophys Acta Biomembr ; 1861(4): 810-818, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30707888

RESUMO

Simvastatin is a lipid-lowering drug in the pharmaceutical group statins. Interaction of a drug with lipids may define its role in the system and be critical for its pharmacological activity. We examined the interactions of simvastatin with zwitterionic dipalmitoyl phosphatidylcholine (DPPC) and anionic dipalmitoyl phosphatidylglycerol (DPPG) multilamellar vesicles (MLVs) as a function of temperature at different simvastatin concentrations using Fourier transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC). The FTIR results indicate that the effect of simvastatin on membrane structure and dynamics depends on the type of membrane lipids. In anionic DPPG MLVs, high simvastatin concentrations (12, 18, 24 mol%) change the position of the CH2 antisymmetric stretching mode to lower wavenumber values, implying an ordering effect. However, in zwitterionic DPPC MLVs, high concentrations of simvastatin disorder systems both in the gel and liquid crystalline phases. Moreover, in DPPG and DPPC MLVs, simvastatin has opposite dual effects on membrane dynamics. The bandwidth of the CH2 antisymmetric stretching modes increases in DPPG MLVs, implying an increase in the dynamics, whereas it decreases in DPPC MLVs. Simvastatin caused broadening of the phase transition peaks and formation of shoulders on the phase transition peaks in DSC curves, indicating multi-domain formations in the phospholipid membranes. Because physical features of membranes such as lipid order and fluidity may be changed with the bioactivity of drugs, opposing effects of simvastatin on the order and dynamics of neutral and charged phospholipids may be critical to deduce the action mechanism of the drug and estimate drug-membrane interactions.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Colesterol/química , Bicamadas Lipídicas/química , Fosfatidilgliceróis/química , Substâncias Redutoras/química , Sinvastatina/química
3.
J Biophotonics ; 10(10): 1345-1355, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28128535

RESUMO

The excess deposition of triglycerides in adipose tissue is the main reason of obesity and causes excess release of fatty acids to the circulatory system resulting in obesity and insulin resistance. Body mass index and waist circumference are not precise measure of obesity and obesity related metabolic diseases. Therefore, in the current study, it was aimed to propose triglyceride bands located at 1770-1720 cm-1 spectral region as a more sensitive obesity related biomarker using the diagnostic potential of Fourier Transform Infrared (FTIR) spectroscopy in subcutaneous (SCAT) and visceral (VAT) adipose tissues. The adipose tissue samples were obtained from 10 weeks old male control (DBA/2J) (n = 6) and four different obese BFMI mice lines (n = 6 per group). FTIR spectroscopy coupled with hierarchical cluster analysis (HCA) and principal component analysis (PCA) was applied to the spectra of triglyceride bands as a diagnostic tool in the discrimination of the samples. Successful discrimination of the obese, obesity related insulin resistant and control groups were achieved with high sensitivity and specificity. The results revealed the power of FTIR spectroscopy coupled with chemometric approaches in internal diagnosis of abdominal obesity based on the spectral differences in the triglyceride region that can be used as a spectral marker.


Assuntos
Tecido Adiposo/patologia , Diferenciação Celular , Informática , Obesidade/patologia , Espectroscopia de Infravermelho com Transformada de Fourier , Triglicerídeos/metabolismo , Animais , Análise por Conglomerados , Camundongos , Análise de Componente Principal
4.
Analyst ; 140(7): 2205-14, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25692183

RESUMO

Obesity is a heterogeneous disorder which increases risks for multiple metabolic diseases, such as type 2 diabetes. The current study aims to characterize and compare visceral and subcutaneous adipose tissues in terms of macromolecular content and investigate transdifferentiation between white and brown adipocytes. Regarding this aim, Fourier transform infrared (FTIR) microspectroscopy and uncoupling protein 1 (UCP1) immunohistological staining were used to investigate gonadal (visceral) and inguinal (subcutaneous) adipose tissues of male Berlin fat mice inbred (BFMI) lines, which are spontaneously obese. The results indicated a remarkable increase in the lipid/protein ratio, accompanied with a decrease of UCP1 protein content which might be due to the transdifferentiation of brown adipocytes to white adipocytes in obese groups. It has been widely reported that brown adipose tissue has a strong effect on fatty acid and glucose homeostasis and it could provide an opportunity for the therapy of obesity. When the amount of brown adipose tissue was decreased, lower unsaturation/saturation ratio, qualitatively longer hydrocarbon acyl chain length of lipids and higher amount of triglycerides were obtained in both adipose tissues of mice lines. The results also revealed that subcutaneous adipose tissue was more prone to obesity-induced structural changes than visceral adipose tissue, which could originate from it possessing a lower amount of brown adipose tissue. The current study clearly revealed the power of FTIR microspectroscopy in the precise determination of obesity-induced structural and functional changes in inguinal and gonadal adipose tissue of mice lines.


Assuntos
Adipócitos Marrons/citologia , Adipócitos Brancos/citologia , Adiposidade , Transdiferenciação Celular , Gordura Intra-Abdominal/citologia , Imagem Óptica , Gordura Subcutânea/citologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Animais , Gordura Intra-Abdominal/metabolismo , Masculino , Camundongos , Espectroscopia de Infravermelho com Transformada de Fourier , Gordura Subcutânea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...