Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Model ; 23(4): 148, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28365822

RESUMO

Single-walled carbon nanotubes show promise as nanoscale transistors for nanocomputing applications. This use will require appropriate methods for creating electrical connections between distinct nanotubes, analogous to welding of metallic wires at larger length scales, but methods for performing nanoscale chemical welding are not yet sufficiently understood. This study examines the effect of Ar bombardment on the junction of two crossed single-walled carbon nanotubes, to understand the value and limitations of this method for generating connections between nanotubes. A geometric criterion was used to assess the quality of the junctions formed, with the goal of identifying the most productive conditions for experimental ion bombardment. In particular, the effects of nanotube chirality, Ar impact kinetic energy, impact particle flux and fluence, and annealing temperature were considered. The most productive bombardment conditions, leading to the most crosslinking of the tubes with the smallest loss of graphitic (i.e., conductive) character, were found to be at relatively mild impact energies (100 eV), with low flux and high-temperature (3000 K) annealing. Particularly noteworthy for experimental application, a high junction quality is maintained for a relatively broad range of fluences, from 3 × 1019 m-2 to at least 1 × 1020 m-2.

2.
Materials (Basel) ; 9(7)2016 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28773699

RESUMO

Isoreticular metal organic frameworks (IRMOFs) have shown high uptake capabilities for storage of H2 (11.5 wt % at 77 K and 170 bar). A significant literature has employed fragment models and a single adsorbed H2 to identify adsorption sites within IRMOFs, as well as the necessary adsorbate-adsorbent interactions needed to reach sufficient adsorption enthalpy for practical usage, however at high pressures it remains to be seen if H2···H2 intermolecular interactions may influence the energetics. This study focuses upon IRMOF-1 (also known as MOF-5), and examines the individual H2 stabilization energies at different sites using Möller-Plesset perturbation theory and density functional theory alongside chemical models that consist of isolated fragment models and a cubic super cell cluster consisting of both the face- and edge-cube's of IRMOF-1. Optimization of twenty stable configurations of singly adsorbed H2 in the super-cell cluster is observed to be essential to obtain energy ordering of the five primary sites consistent with experiment and prior benchmark calculations (α >> ß > γ > δ ≈ ε). To examine site-to-site interactions that may occur in the high-pressure regime, 64 co-adsorbed H2 within a super-cell cluster have been studied (a theoretical maximum of all adsorption sites, 14 wt %). There, delocalization and/or charge transfer of electrons is observed from the σ orbitals of the H2 bound at the γ positions into the σ* orbitals of H2 bound at the α sites leads to stabilization of the interaction of H2 at the γ, by 1.4 kJ/mol, respectively (using M06-2X/LANL2DZ). This effect has been confirmed to be charge transfer, and not a manifestation of enhanced dispersion at high loading, through natural bond order (NBO) analysis and by comparisons of the square of off-diagonal NBO Fock matrix elements for both density functionals that account for dispersion interactions and Hartree-Fock calculations that ignore dispersion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...