Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucl Med Biol ; 44: 83-89, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837726

RESUMO

INTRODUCTION: In recent years extra-corporal application of boron neutron capture therapy (BNCT) was evaluated for liver primary tumors or liver metastases. A prerequisite for such a high-risk procedure is proof of preferential delivery and high uptake of a 10B-pharmaceutical in liver malignancies. In this work we evaluated in a preclinical tumor model if [18F]FBPA tissue distribution measured with PET is able to predict the tissue distribution of [10B]L-BPA. METHODS: Tumor bearing mice (hepatocellular carcinoma cell line, HuH-7) were either subject of a [18F]FBPA-PET scan with subsequent measurement of radioactivity content in extracted organs using a gamma counter or injected with [10B]L-BPA with tissue samples analyzed by prompt gamma activation analysis (PGAA) or quantitative neutron capture radiography (QNCR). The impact of L-tyrosine, L-DOPA and L-BPA preloading on the tissue distribution of [18F]FBPA and [10B]L-BPA was evaluated and the pharmacokinetics of [18F]FBPA investigated by compartment modeling. RESULTS: We found a significant correlation between [18F]FBPA and [10B]L-BPA uptake in tumors and various organs as well as high accumulation levels in pancreas and kidneys as reported in previous studies. Tumor-to-liver ratios of [18F]FBPA ranged from 1.2 to 1.5. Preloading did not increase the uptake of [18F]FBPA or [10B]L-BPA in any organ and compartment modeling showed no statistically significant differences in [18F]FBPA tumor kinetics. CONCLUSIONS: [18F]FBPA-PET predicts [10B]L-BPA concentration after amino acid preloading in HuH-7 hepatocellular carcinoma models. Preloading had no effect on tumor uptake of [18F]FBPA. ADVANCES IN KNOWLEDGE: Despite differences in chemical structure and administered dose [18F]FBPA and [10B]L-BPA demonstrate an equivalent biodistribution in a preclinical tumor model. IMPLICATIONS FOR PATIENT CARE: [18F]FBPA-PET is suitable for treatment planning and dose calculations in BNCT applications for liver malignancies. However, alternative tracers with more favorable tumor-to-liver ratios should be investigated.


Assuntos
Compostos de Boro/metabolismo , Terapia por Captura de Nêutron de Boro , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/radioterapia , Fenilalanina/análogos & derivados , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Camundongos , Fenilalanina/metabolismo , Tomografia por Emissão de Pósitrons
2.
Sci Rep ; 6: 29109, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27388948

RESUMO

Outstanding crystalline perfection is a key requirement for the formation of new forms of electronic order in a vast number of widely different materials. Whereas excellent sample quality represents a standard claim in the literature, there are, quite generally, no reliable microscopic probes to establish the nature and concentration of lattice defects such as voids, dislocations and different species of point defects on the level relevant to the length and energy scales inherent to these new forms of order. Here we report an experimental study of the archetypical skyrmion-lattice compound MnSi, where we relate the characteristic types of point defects and their concentration to the magnetic properties by combining different types of positron spectroscopy with ab-initio calculations and bulk measurements. We find that Mn antisite disorder broadens the magnetic phase transitions and lowers their critical temperatures, whereas the skyrmion lattice phase forms for all samples studied underlining the robustness of this topologically non-trivial state. Taken together, this demonstrates the unprecedented sensitivity of positron spectroscopy in studies of new forms of electronic order.

3.
Appl Radiat Isot ; 106: 151-5, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26242559

RESUMO

The selective delivery of (10)B into the tumor tissue remains to be further improved for successful and reliable Boron Neutron Capture Therapy applications. Magnetic Drug Targeting using intraarterially administered superparamagnetic nanoparticles and external magnetic fields already exhibited convincing results in terms of highly efficient and selective drug deposition. Using the same technique for the targeted (10)B delivery is a promising new approach. Here, systematic irradiation experiments of phantom cubes containing different concentrations of boron and nanoparticles as well as varying three-dimensional arrangements have been performed.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Magnetismo , Nanopartículas , Neoplasias/radioterapia , Humanos
4.
Phys Chem Chem Phys ; 16(47): 25701-9, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-24848359

RESUMO

Silicon has several advantages when compared to other thermoelectric materials, but until recently it was not used for thermoelectric applications due to its high thermal conductivity, 156 W K(-1) m(-1) at room temperature. Nanostructuration as means to decrease thermal transport through enhanced phonon scattering has been a subject of many studies. In this work we have evaluated the effects of nanostructuration on the lattice dynamics of bulk nanocrystalline doped silicon. The samples were prepared by gas phase synthesis, followed by current and pressure assisted sintering. The heat capacity, density of phonons states, and elastic constants were measured, which all reveal a significant, ≈25%, reduction in the speed of sound. The samples present a significantly decreased lattice thermal conductivity, ≈25 W K(-1) m(-1), which, combined with a very high carrier mobility, results in a dimensionless figure of merit with a competitive value that peaks at ZT≈ 0.57 at 973 °C. Due to its easily scalable and extremely low-cost production process, nanocrystalline Si prepared by gas phase synthesis followed by sintering could become the material of choice for high temperature thermoelectric generators.

5.
Med Phys ; 40(2): 023501, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23387779

RESUMO

PURPOSE: The application of lithium is well known to have an antimanic-depressive effect, however, the influence it has on the human brain is still insufficiently known. The aim of our work is to develop a method to investigate the lithium concentration in the human brain with a very high sensitivity and a submillimeter resolution. Present methods either do not provide spatial resolution or are not sensitive enough to measure the naturally occurring lithium content in the human brain. Our method provides the opportunity to perform postmortem series measurements and obtain a detailed map of the lithium distribution in the human brain. This way possible correlations of the lithium distribution in the human brain and biological reasons for affective disorder can be clarified. METHODS: To study the lithium distribution in different regions of the human brain the authors developed a method to measure lithium traces postmortem with a submillimeter spatial resolution using the neutron capture reaction (6)Li(n, α)(3)H. The lithium is measured by coincident detection of the alpha particles and tritons, emitted in opposite directions. The general concept, the preparation of the brain samples, the experimental setup at the measurement station of the Forschungs-Neutronenquelle Heinz Maier-Leibnitz, and a first measurement on human brain tissue are presented. RESULTS: A first measurement on a brain tissue sample nicely showed a spatial distribution of lithium down to a few hundreds of pg∕cm(3) with a maximal resolution of about σ(x) = σ(y) ≈ 200 µm. Also a direct correlation of lithium and optical tissue structure is observable. Typical measurement times of a few minutes allow for series measurements of up to 20 × 20 mm(2) large samples with a thickness of w = 10-20 µm in medical studies. CONCLUSIONS: The combination of a very high lithium sensitivity with position resolving measurement makes this method well suited for postmortem studies of the microscopic lithium distribution in the human brain and thus to form a microscopic picture of the impact of lithium in different areas of the human brain.


Assuntos
Encéfalo/citologia , Encéfalo/metabolismo , Lítio/metabolismo , Nêutrons , Humanos , Limite de Detecção
6.
Appl Radiat Isot ; 67(12): 2070-4, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19535256

RESUMO

First comprehensive analysis with PGAA, Prompt Gamma-ray Activation Imaging (PGAI) and neutron tomography (NT) techniques at the research reactor FRM II was tested on a piece of the Allende meteorite. With the PGAA method the bulk elemental composition of the heterogeneous meteorite was determined. Due to the small dimension of the sample, only the 2D elemental distribution of the object was derived with position sensitive PGAI analysis. As an example 2D maps for Si, Fe and Mg are presented. Neutron tomography of the meteorite was carried out with the same cold neutron beam.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...