Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(20)2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36295168

RESUMO

Ceramic composites with nanoparticles are intensively investigated due to their unique thermal, mechanic and electromagnetic properties. In this work, dielectric properties of phosphate ceramics with round silver nanoparticles of various sizes were studied in the wide frequency range of 20 Hz-40 GHz for microwave shielding applications. The percolation threshold in ceramics is close to 30 wt.% of Ag nanoparticles content and it is higher for bigger-sized nanoparticles. The microwave complex dielectric permittivity of ceramics above the percolation threshold is rather high (ε' = 10 and ε″ = 10 at 30 GHz for ceramics with 50 wt.% inclusions of 30-50 nm size, it corresponds to almost 61% absorption of 2 mm-thickness plate) therefore these ceramics are suitable for microwave shielding applications. Moreover, the microwave absorption is bigger for ceramics with a larger concentration of fillers. In addition, it was demonstrated that the electrical transport in ceramics is thermally activated above room temperature and the potential barrier is almost independent of the concentration of nanoparticles. At very low temperature, the electrical transport in ceramics can be related to electron tunneling.

2.
Materials (Basel) ; 14(17)2021 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-34501154

RESUMO

Composite materials with 83 wt.% of the 0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 distributed in phosphate-bonded ceramics were prepared at three different pressures. A phosphate matrix comprises a mixture of an aluminum phosphate binder and melted periclase, MgO. All samples demonstrate a homogeneous distribution of the ferroelectric perovskite phase and are thermally stable up to 900 K. At higher temperatures, the pyrochlore cubic phase forms. It has been found that the density of the composites non-monotonously depends on the pressure. The dielectric permittivity and losses substantially increase with the density of the samples. The fabricated composites demonstrate diffused ferroelectric-paraelectric transition and prominent piezoelectric properties.

3.
Materials (Basel) ; 14(1)2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33396932

RESUMO

The composite material filled with nano-sized BaTiO3 and Fe3O4 was designed and studied. The aluminium phosphate ceramics was used as a matrix. The XRD analysis demonstrates only the crystalline structure of the fillers used. The thermogravimetric analysis proves the thermal stability of the composites up to 950 K. The Maxwell-Wagner relaxation was observed in the dielectric spectra of the investigated composites. The dielectric spectroscopy proves the close contact between the nanoparticles with the different ferroic ordering. The phosphate-based composites have been proved to be a prospective candidate for the multiphase multiferroic materials design and development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...