Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bone Marrow Transplant ; 59(6): 795-802, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38431763

RESUMO

In patients undergoing haematopoietic stem-cell transplantation (HSCT), the intestinal microbiota plays an important role in prognosis, transplant outcome, and complications such as graft-versus-host disease (GVHD). Our prior research revealed that patients undergoing HSCT substantially differed from healthy controls. In this retrospective study, we showed that administering Clostridium butyricum MIYAIRI 588 (CBM588) as a live biotherapeutic agent is associated with maintaining intestinal microbiota in the early post-HSCT period. Alpha diversity, which reflects species richness, declined considerably in patients who did not receive CBM588, whereas it remained consistent in those who received CBM588. In addition, ß-diversity analysis revealed that CBM588 did not alter the gut microbiota structure at 7-21 days post-HSCT. Patients who developed GVHD showed structural changes in their microbiota from the pre-transplant period, which was noticeable on day 14 before developing GVHD. Enterococcus was significantly prevalent in patients with GVHD after HSCT, and the population of Bacteroides was maintained from the pre-HSCT period through to the post-HSCT period. Patients who received CBM588 exhibited a contrasting trend, with lower relative abundances of both genera Enterococcus and Bacteroides. These results suggest that preoperative treatment with CBM588 could potentially be beneficial in maintaining intestinal microbiota balance.


Assuntos
Clostridium butyricum , Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Doença Enxerto-Hospedeiro/microbiologia , Idoso
2.
Front Cell Infect Microbiol ; 13: 1113401, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37201113

RESUMO

Introduction: Antifungal agents are not always efficient in resolving vulvovaginal candidiasis (VVC), a common genital infection caused by the overgrowth of Candida spp., including Candida albicans, or in preventing recurrent infections. Although lactobacilli (which are dominant microorganisms constituting healthy human vaginal microbiota) are important barriers against VVC, the Lactobacillus metabolite concentration needed to suppress VVC is unknown. Methods: We quantitatively evaluated Lactobacillus metabolite concentrations to determine their effect on Candida spp., including 27 vaginal strains of Lactobacillus crispatus, L. jensenii, L. gasseri, Lacticaseibacillus rhamnosus, and Limosilactobacillus vaginalis, with inhibitory abilities against biofilms of C. albicans clinical isolates. Results: Lactobacillus culture supernatants suppressed viable fungi by approximately 24%-92% relative to preformed C. albicans biofilms; however, their suppression differed among strains and not species. A moderate negative correlation was found between Lactobacillus lactate production and biofilm formation, but no correlation was observed between hydrogen peroxide production and biofilm formation. Both lactate and hydrogen peroxide were required to suppress C. albicans planktonic cell growth. Lactobacillus strains that significantly inhibited biofilm formation in culture supernatant also inhibited C. albicans adhesion to epithelial cells in an actual live bacterial adhesion competition test. Discussion: Healthy human microflora and their metabolites may play important roles in the development of new antifungal agent against C. albicans-induced VVC.


Assuntos
Candida albicans , Candidíase Vulvovaginal , Feminino , Humanos , Peróxido de Hidrogênio/farmacologia , Lactobacillus , Candida , Antifúngicos/farmacologia , Células Epiteliais , Biofilmes
3.
Vet Anim Sci ; 15: 100236, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35146180

RESUMO

Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from livestock. Flavophospholipol (FPL), used as a feed additive, has an inhibitory effect on the spread of plasmid-mediated antimicrobial resistance. The number of TC-resistant E. coli was determined in pigs administered TCs and/or FPL to clarify the effect of FPL on reducing the number of TC-resistant E. coli in pigs. TC-resistant E. coli and their plasmids were then analyzed. The pigs were divided into four groups: control, doxycycline (DOXY; a TC), FPL, and a DOXY-FPL combination. Their feces were collected from the nursing period to the day before being transported to the slaughterhouse, followed by estimation of TC-resistant E. coli (colony-forming units [CFU]/g). The number of TC-resistant E. coli increased with the use of DOXY, suggesting that DOXY administration provides a selective pressure for TC-resistant E. coli. Supplementation with FPL as a feed additive significantly suppressed the increase in the number of TC-resistant E. coli, especially during the DOXY administration period. Transfer and growth inhibition analyses were performed for TC-resistant isolates. FPL inhibited the conjugational transfer and growth of a few TC-resistant E. coli isolates. These results suggest that FPL is effective against the spread of TC-resistant E. coli.

4.
Front Vet Sci ; 8: 736996, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733902

RESUMO

Endometritis has a major impact on fertility in postpartum dairy cows. Since previous studies showed an association between reproductive microbiota and perinatal disease, we monitored both bovine uterine and vaginal microbiota in primiparous cows to elucidate the effect of early postpartum microbiota on endometritis. Uterine and vaginal samples were collected at time points from pre-calving to 35 days postpartum (DPP), and analyzed by 16S rRNA sequencing, combined with ancillary bacterial culture. A total of seven healthy cows and seven cows diagnosed with endometritis on 35 DPP were used in the current study. The uterine and vaginal microbiota showed a maximum of 20.1% shared amplicon sequence variants (ASVs) at linked time points. 16S rRNA based analysis and traditional culture methods revealed that Trueperella showed a higher abundance in both uterus and vagina of the endometritis group compared to the healthy group on 21 DPP (U-test p < 0.05). Differential abundance analysis of the uterine microbiota showed that Enterococcus and six bacterial genera including Bifidobacterium were unique to the healthy group on the day of calving (0 DPP) and 28 DPP, respectively. In contrast, Histophilus and Mogibacteriaceae were characteristic bacteria in the vagina pre-calving in cows that later developed endometritis, suggesting that these bacteria could be valuable to predict clinical outcomes. Comparing the abundances of bacterial genera in the uterine microbiota, a negative correlation was observed between Trueperella and several bacteria including Lactobacillus. These results suggest that building an environment where there is an increase in bacteria that are generally recognized as beneficial, such as Lactobacillus, may be one possible solution to reduce the abundance of Trueperella and control endometritis.

5.
PLoS One ; 14(11): e0225340, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31743366

RESUMO

Shiga toxin-producing Escherichia coli (STEC) can cause severe gastrointestinal disease and colonization among food handlers. In Japan, STEC infection is a notifiable disease, and food handlers are required to undergo routine stool examination for STEC. However, the molecular epidemiology of STEC is not entirely known. We investigated the genomic characteristics of STEC from patients and asymptomatic food handlers in Miyagi Prefecture, Japan. Whole-genome sequencing (WGS) was performed on 65 STEC isolates obtained from 38 patients and 27 food handlers by public health surveillance in Miyagi Prefecture between April 2016 and March 2017. Isolates of O157:H7 ST11 and O26:H11 ST21 were predominant (n = 19, 29%, respectively). Non-O157 isolates accounted for 69% (n = 45) of all isolates. Among 48 isolates with serotypes found in the patients (serotype O157:H7 and 5 non-O157 serotypes, O26:H11, O103:H2, O103:H8, O121:H19 and O145:H28), adhesion genes eae, tir, and espB, and type III secretion system genes espA, espJ, nleA, nleB, and nleC were detected in 41 to 47 isolates (85-98%), whereas isolates with other serotypes found only in food handlers were negative for all of these genes. Non-O157 isolates were especially prevalent among patients younger than 5 years old. Shiga-toxin gene stx1a, adhesion gene efa1, secretion system genes espF and cif, and fimbrial gene lpfA were significantly more frequent among non-O157 isolates from patients than among O157 isolates from patients. The most prevalent resistance genes among our STEC isolates were aminoglycoside resistance genes, followed by sulfamethoxazole/trimethoprim resistance genes. WGS revealed that 20 isolates were divided into 9 indistinguishable core genomes (<5 SNPs), demonstrating clonal expansion of these STEC strains in our region, including an O26:H11 strain with stx1a+stx2a. Non-O157 STEC with multiple virulence genes were prevalent among both patients and food handlers in our region of Japan, highlighting the importance of monitoring the genomic characteristics of STEC.


Assuntos
Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genoma Bacteriano , Genômica , Escherichia coli Shiga Toxigênica/classificação , Escherichia coli Shiga Toxigênica/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Feminino , Manipulação de Alimentos , Genômica/métodos , Humanos , Incidência , Lactente , Japão/epidemiologia , Masculino , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Filogenia , Sorogrupo , Virulência , Fatores de Virulência/genética , Adulto Jovem
6.
J Antibiot (Tokyo) ; 72(2): 79-85, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30361635

RESUMO

Flavophospholipol (FPL) is an antimicrobial feed additive that has been approved for use in livestock animals and has the potential to decrease horizontal dissemination of antimicrobial resistance genes. Since previous studies showed that FPL has an inhibitory effect on plasmid transfer, in vitro experiments have proven the efficacy of FPL in reducing the conjugative transfer of plasmids encoding the extended-spectrum ß-lactamase (ESBL) and vanA genes. These are among the most important antimicrobial resistance loci known. ESBL-producing Escherichia coli and vancomycin-resistant Enterococcus faecalis (VRE) were exposed to several concentrations of FPL, and transfer frequency and plasmid curing activity were determined. FPL inhibited the conjugative transfer of plasmids harboring ESBL and vanA genes in a concentration-dependent manner in all strains. Further transfer experiments revealed that FPL could decrease or increase transfer frequency depending on plasmid type when transfer frequency was at low levels. The plasmid curing activity of FPL was also observed in ESBL-producing E. coli in a concentration-dependent manner, suggesting that they partially contribute to the inhibition of conjugative transfer. These results suggest that the use of FPL as a feed additive might decrease the dissemination of ESBL and vanA genes among livestock animals.


Assuntos
Antibacterianos/farmacologia , Bambermicinas/farmacologia , Conjugação Genética/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Escherichia coli/crescimento & desenvolvimento , Aditivos Alimentares/farmacologia , Transferência Genética Horizontal/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/crescimento & desenvolvimento , Ração Animal , Proteínas de Bactérias/genética , Carbono-Oxigênio Ligases/genética , Farmacorresistência Bacteriana Múltipla/genética , Infecções por Escherichia coli/prevenção & controle , Infecções por Bactérias Gram-Positivas/prevenção & controle , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Plasmídeos/fisiologia , beta-Lactamases/genética
7.
Anaerobe ; 54: 8-18, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30076897

RESUMO

BACKGROUND: Clostridium butyricum MIYAIRI 588 (CBM 588) is a probiotic bacterium that is used as an anti-diarrheal medicine in Japan. However, the impact of this probiotic on the gut microbiome has not been fully elucidated, especially, when used with antimicrobials. MATERIAL AND METHODS: In an in vivo study, CBM 588 monotherapy, clindamycin monotherapy, CBM 588 and clindamycin (combination therapy), or normal saline (control) was orally administered to mice for 4 days, and fecal samples were collected for 18 days to enumerate C. butyricum. We also extracted DNA from these fecal samples for metagenomics analysis by amplification of the V3-V4 region of the bacterial 16S rRNA gene and MiSeq Illumina sequencing. In addition, the concentrations of some short chain fatty acids were assessed in the fecal samples. A histological analysis was also conducted. RESULTS: On day 4 (the last treatment day), there was no difference in the total counts of C. butyricum between the CBM 588 monotherapy and combination therapy groups (5.21 ±â€¯0.78 vs. 5.13 ±â€¯0.45 log10 cfu/g, p = 0.86). Clindamycin treatment resulted in dramatic increases in the phylum Firmicutes, especially Enterobacteriaceae, Clostridiaceae, Lactobacillus, and Enterococcus, compared with the other groups during the treatment period. CBM 588 treatment modified the bacterial community composition at lower phylogenetic levels. Some bacterial taxa, such as Bifidobacterium, Coprococcus, and Bacteroides, were significantly increased in the combination therapy group when compared with the other groups. In the metabolic analysis, CBM 588 enhanced lactic acid production. It also enhanced the efficiency of lactic acid use for the production of butyric acid. Only the clindamycin monotherapy group showed abnormal colon tissue, with superficial epithelial necrosis and the presence of inflammatory cells. CONCLUSION: CBM 588 treatment modulated the gut microbiota composition under dysbiosis due to the use of an antimicrobial with strong activity against anaerobes and significantly reduced epithelial damage.


Assuntos
Bactérias/isolamento & purificação , Clostridium butyricum/fisiologia , Colo/microbiologia , Microbioma Gastrointestinal , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Clostridium butyricum/genética , Clostridium butyricum/isolamento & purificação , Clostridium butyricum/metabolismo , Colo/patologia , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos ICR , Filogenia , Probióticos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...