Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Phys ; 51(7): 5130-5141, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38127935

RESUMO

BACKGROUND: Ionoacoustics is a promising approach to reduce the range uncertainty in proton therapy. A miniature-sized optical hydrophone (OH) was used as a measuring device to detect weak ionoacoustic signals with a high signal-to-noise ratio in water. However, further development is necessary to prevent wave distortion because of nearby acoustic impedance discontinuities while detection is conducted on the patient's skin. PURPOSE: A prototype of the probe head attached to an OH was fabricated and the required dimensions were experimentally investigated using a 100-MeV proton beam from a fixed-field alternating gradient accelerator and k-Wave simulations. The beam range of the proton in a tissue-mimicking phantom was estimated by measuring γ-waves and spherical ionoacoustic waves with resonant frequency (SPIRE). METHODS: Four sizes of probe heads were fabricated from agar blocks for the OH. Using the prototype, the Î³-wave was detected at distal and lateral positions to the Bragg peak on the phantom surface for proton beams delivered at seven positions. For SPIRE, independent measurements were performed at distal on- and off-axis positions. The range positions were estimated by solving the linear equation using the sensitive matrix for the γ-wave and linear fitting of the correlation curve for SPIRE; they were compared with those measured using a film. RESULTS: The first peak of the γ-wave was undistorted with the 3 × 3 × 3-cm3 probe head used at the on-axis and 3-cm off-axis positions. The range positions estimated by the γ-wave agreed with the film-based range in the depth direction (the maximum deviation was 0.7 mm), although a 0.6-2.1 mm deviation was observed in the lateral direction. For SPIRE, the deviation was <1 mm for the two measurement positions. CONCLUSIONS: The attachment of a relatively small-sized probe head allowed the OH to measure the beam range on the phantom surface.


Assuntos
Ágar , Imagens de Fantasmas , Ágar/química , Acústica/instrumentação , Terapia com Prótons/instrumentação
2.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004464

RESUMO

Glioblastoma is a highly invasive and fatal disease. Temozolomide, a blood-brain barrier (BBB)-penetrant therapeutic agent currently used for glioblastoma, does not exhibit sufficient therapeutic effect. Cisplatin (CDDP), a versatile anticancer drug, is not considered a therapeutic option for glioblastoma due to its low BBB permeability. We previously investigated the utility of microbubbles (MBs) in combination with ultrasound (US) in promoting BBB permeability and reported the efficacy of drug delivery to the brain using a minimally invasive approach. This study aimed to evaluate the feasibility of CDDP delivery to the brain using the combination of MBs and US for the treatment of glioblastoma. We used mice that were implanted with glioma-261 GFP-Luc cells expressing luciferase as the glioblastoma model. In this model, after tumor inoculation, the BBB opening was induced using MBs and US, and CDDP was simultaneously administered. We found that the CDDP concentrations were higher at the glioblastoma site where the US was applied, although CDDP normally cannot pass through the BBB. Furthermore, the survival was longer in mice treated with CDDP delivered via MBs and US than in those treated with CDDP alone or those that were left untreated. These results suggest that the combination of MBs and US is an effective antitumor drug delivery system based on BBB opening in glioblastoma therapy.

3.
Med Phys ; 50(4): 2438-2449, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36565440

RESUMO

BACKGROUND: Proton range uncertainty has been the main factor limiting the ability of proton therapy to concentrate doses to tumors to their full potential. Ionoacoustic (IA) range verification is an approach to reducing this uncertainty by detecting thermoacoustic waves emitted from an irradiated volume immediately following a pulsed proton beam delivery; however, the signal weakness has been an obstacle to its clinical application. To increase the signal-to-noise ratio (SNR) with the conventional piezoelectric hydrophone (PH), the detector-sensitive volume needs to be large, but it could narrow the range of available beam angles and disturb real-time images obtained during beam delivery. PURPOSE: To prevent this issue, we investigated a millimeter-sized optical hydrophone (OH) that exploits the laser interferometric principle. For two types of IA waves [γ-wave emitted from the Bragg peak (BP) and a spherical IA wave with resonant frequency (SPIRE) emitted from the gold fiducial marker (GM)], comparisons were made with PH in terms of waveforms, SNR, range detection accuracy, and signal intensity robustness against the small detector misalignment, particularly for SPIRE. METHODS: A 100-MeV proton beam with a 27 ns pulse width and 4 mm beam size was produced using a fixed-field alternating gradient accelerator and was irradiated to the water phantom. The GM was set on the beam's central axis. Acrylic plates of various thicknesses, up to 12 mm, were set in front of the phantoms to shift the proton range. OH was set distal and lateral to the beam, and the range was estimated using the time-of-flight method for γ-wave and by comparing with the calibration data (SPIRE intensity versus the distance between the GM and BP) derived from an IA wave transport simulation for SPIRE. The BP dose per pulse was 0.5-0.6 Gy. To measure the variation in SPIRE amplitude against the hydrophone misalignment, the hydrophone was shifted by ± 2 mm at a maximum in lateral directions. RESULTS: Despite its small size, OH could detect γ-wave with a higher SNR than the conventional PH (diameter, 29 mm), and a single measurement was sufficient to detect the beam range with a submillimeter accuracy in water. In the SPIRE measurement, OH was far more robust against the detector misalignment than the focused PH (FPH) used in our previous study [5%/mm (OH) versus 80%/mm (FPH)], and the correlation between the measured SPIRE intensity and the distance between the GM and BP agreed well with the simulation results. However, the OH sensitivity was lower than the FPH sensitivity, and about 5.6-Gy dose was required to decrease the intensity variation among measurements to less than 10%. CONCLUSION: The miniature OH was found to detect weak IA signals produced by proton beams with a BP dose used in hypofractionated regimens. The OH sensitivity improvement at the MHz regime is worth exploring as the next step.


Assuntos
Terapia com Prótons , Prótons , Água , Acústica , Terapia com Prótons/métodos , Imagens de Fantasmas , Método de Monte Carlo , Dosagem Radioterapêutica
4.
Front Pharmacol ; 13: 837754, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370726

RESUMO

Intravesical chemotherapy after transurethral resection is a treatment option in patients with non-muscle invasive bladder cancer. The efficacy of intravesical chemotherapy is determined by the cellular uptake of intravesical drugs. Therefore, drug delivery technologies in the urinary bladder are promising tools for enhancing the efficacy of intravesical chemotherapy. Ultrasound-triggered microbubble cavitation may enhance the permeability of the urothelium, and thus may have potential as a drug delivery technology in the urinary bladder. Meanwhile, the enhanced permeability may increase systemic absorption of intravesical drugs, which may increase the adverse effects of the drug. The aim of this preliminary safety study was to assess the systemic absorption of an intravesical drug that was delivered by ultrasound-triggered microbubble cavitation in the urinary bladder of normal dogs. Pirarubicin, a derivative of doxorubicin, and an ultrasound contrast agent (Sonazoid) microbubbles were administered in the urinary bladder. Ultrasound (transmitting frequency 5 MHz; pulse duration 0.44 µsec; pulse repetition frequency 7.7 kHz; peak negative pressure -1.2 MPa) was exposed to the bladder using a diagnostic ultrasound probe (PLT-704SBT). The combination of ultrasound and microbubbles did not increase the plasma concentration of intravesical pirarubicin. In addition, hematoxylin and eosin staining showed that the combination of ultrasound and microbubble did not cause observable damages to the urothelium. Tissue pirarubicin concentration in the sonicated region was higher than that of the non-sonicated region in two of three dogs. The results of this pilot study demonstrate the safety of the combination of intravesical pirarubicin and ultrasound-triggered microbubble cavitation, that is, ultrasound-assisted intravesical chemotherapy.

5.
Artigo em Inglês | MEDLINE | ID: mdl-35347482

RESUMO

The biological effects of ultrasound exposure are classified into thermal and mechanical effects. The medical application of shock waves has been explored widely as a technique that exerts a mechanical effect with no thermal effect on the living body. The application of shock waves started in urology as a method to disintegrate calculi by impulsive force. During widespread use in urology, it was confirmed that shock waves could also induce some changes in the bones and soft tissues located in the propagation path, and application of shock waves in the field of orthopedics is currently under intensive investigation. In this brief review, we first discuss the similarities of and differences between shock waves and ultrasound. The characteristics of shock wave sources used to generate therapeutic shock waves are then described, and the mechanisms by which shock waves induce stone fragmentation and other therapeutic effects are discussed.

6.
Med Phys ; 48(9): 5490-5500, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34173991

RESUMO

PURPOSE: Ionoacoustics is one of the promising approaches to verify the beam range in proton therapy. However, the weakness of the wave signal remains a main hindrance to its application in clinics. Here we studied the potential use of a fixed-field alternating gradient accelerator (FFA), one of the accelerator candidates for future proton therapy. For such end, magnitude of the pressure wave and range accuracy achieved by the short-pulsed beam of FFA were assessed, using both simulation and experimental procedure. METHODS: A 100 MeV proton beam from the FFA was applied on a water phantom, through the acrylic wall. The beam range measured by the Bragg peak (BP)-ionization chamber (BPC) was 77.6 mm, while the maximum dose at BP was estimated to be 0.35 Gy/pulse. A hydrophone was placed 20 mm downstream of the BP, and signals were amplified and stored by a digital oscilloscope, averaged, and low-pass filtered. Time-of-flight (TOF) and two relative TOF values were analyzed in order to determine the beam range. Furthermore, an acoustic wave transport simulation was conducted to estimate the amplitude of the pressure waves. RESULTS: The range calculated when using two relative TOF was 78.16 ± 0.01 and 78.14 ± 0.01 mm, respectively, both values being coherent with the range measured by the BPC (the difference was 0.5-0.6 mm). In contrast, utilizing the direct TOF resulted in a range error of 1.8 mm. Fivefold and 50-fold averaging were required to suppress the range variation to below 1 mm for TOF and relative TOF measures, respectively. The simulation suggested the magnitude of pressure wave at the detector exceeded 7 Pascal. CONCLUSION: A submillimeter range accuracy was attained with a pulsed beam of about 21 ns from an FFA, at a clinical energy using relative TOF. To precisely quantify the range with a single TOF measurement, subsequent improvement in the measuring system is required.


Assuntos
Terapia com Prótons , Prótons , Acústica , Imagens de Fantasmas , Dosagem Radioterapêutica , Som
7.
Sci Rep ; 10(1): 20385, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33230208

RESUMO

In contrast to conventional X-ray therapy, proton beam therapy (PBT) can confine radiation doses to tumours because of the presence of the Bragg peak. However, the precision of the treatment is currently limited by the uncertainty in the beam range. Recently, a unique range verification methodology has been proposed based on simulation studies that exploit spherical ionoacoustic waves with resonant frequency (SPIREs). SPIREs are emitted from spherical gold markers in tumours initially introduced for accurate patient positioning when the proton beam is injected. These waves have a remarkable property: their amplitude is linearly correlated with the residual beam range at the marker position. Here, we present proof-of-principle experiments using short-pulsed proton beams at the clinical dose to demonstrate the feasibility of using SPIREs for beam-range verification with submillimetre accuracy. These results should substantially contribute to reducing the range uncertainty in future PBT applications.


Assuntos
Ouro/efeitos da radiação , Imagens de Fantasmas , Terapia com Prótons/métodos , Prótons , Ouro/química , Humanos , Método de Monte Carlo , Terapia com Prótons/instrumentação , Dosagem Radioterapêutica , Som , Água/química
8.
J Med Ultrasound ; 28(2): 59-82, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32874864

RESUMO

The first edition of the guidelines for the use of ultrasound contrast agents was published in 2004, dealing with liver applications. The second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some nonliver applications. The third edition of the contrast-enhanced ultrasound (CEUS) guidelines was the joint World Federation for Ultrasound in Medicine and Biology-European Federation of Societies for Ultrasound in Medicine and Biology (WFUMB-EFSUMB) venture in conjunction with other regional US societies such as Asian Federation of Societies for Ultrasound in Medicine and Biology, resulting in a simultaneous duplicate on liver CEUS in the official journals of both WFUMB and EFSUMB in 2013. However, no guidelines were described mainly for Sonazoid due to limited clinical experience only in Japan and Korea. The new proposed consensus statements and recommendations provide general advice on the use of Sonazoid and are intended to create standard protocols for the use and administration of Sonazoid in hepatic and pancreatobiliary applications in Asian patients and to improve patient management.

9.
Ultrasonography ; 39(3): 191-220, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32447876

RESUMO

The first edition of the guidelines for the use of ultrasound contrast agents was published in 2004, dealing with liver applications. The second edition of the guidelines in 2008 reflected changes in the available contrast agents and updated the guidelines for the liver, as well as implementing some nonliver applications. The third edition of the contrast-enhanced ultrasound (CEUS) guidelines was the joint World Federation for Ultrasound in Medicine and Biology-European Federation of Societies for Ultrasound in Medicine and Biology (WFUMB-EFSUMB) venture in conjunction with other regional US societies such as Asian Federation of Societies for Ultrasound in Medicine and Biology, resulting in a simultaneous duplicate on liver CEUS in the official journals of both WFUMB and EFSUMB in 2013. However, no guidelines were described mainly for Sonazoid due to limited clinical experience only in Japan and Korea. The new proposed consensus statements and recommendations provide general advice on the use of Sonazoid and are intended to create standard protocols for the use and administration of Sonazoid in hepatic and pancreatobiliary applications in Asian patients and to improve patient management.

10.
Ultrasound Med Biol ; 46(7): 1565-1583, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32331799

RESUMO

Microbubble-assisted ultrasound has emerged as a promising method for local drug delivery. Microbubbles are intravenously injected and locally activated by ultrasound, thus increasing the permeability of vascular endothelium for facilitating extravasation and drug uptake into the treated tissue. Thereby, endothelial cells are the first target of the effects of ultrasound-driven microbubbles. In this review, the in vitro and in vivo bioeffects of this method on endothelial cells are described and discussed, including aspects on the permeabilization of biologic barriers (endothelial cell plasma membranes and endothelial barriers), the restoration of their integrity, the molecular and cellular mechanisms involved in both these processes, and the resulting intracellular and intercellular consequences. Finally, the influence of the acoustic settings, microbubble parameters, treatment schedules and flow parameters on these bioeffects are also reviewed.


Assuntos
Sistemas de Liberação de Medicamentos , Células Endoteliais , Microbolhas/uso terapêutico , Ondas Ultrassônicas , Permeabilidade da Membrana Celular , Sistemas de Liberação de Medicamentos/métodos , Humanos
11.
J Liposome Res ; 29(4): 368-374, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30526185

RESUMO

It is known that Phosphatidyl choline-Phosphatidyl glycerol mixtures can be used for liposome formulations, making them less leaky than liposomes with only one lipid. We hypothesized that this might also be the case for bubbles, which can be used as ultrasound (US) contrast agents. Therefore, we have compared a series of mixed distearoyl phosphatidylcholine-distearoyl phosphatidylglycerol (DSPC-DPSG) bubbles and with bubbles containing either DSPC or DSPG (and distearoyl ethanolamine-polyethyleneglycol 2000, DSPE-PEG2k). Here, we describe the development, examination of stability in vitro and attenuation of broad frequency US pulses. Novel lipid-stabilized freeze-dried formulations for US applications, using the phospholipids DSPC, DSPG, and PEGylated DSPE-PEG2k and perfluoropropane gas were developed. It was found that the bubbles could effectively be preserved by freeze-drying and then re-constituted by addition of water. Average bubble sizes were around 2 µm for all bubbles after re-constitution. Bubble stability was assessed by evaluating the decay of the US backscattering signal in vitro. Bubbles containing DSPG were more stable than bubbles with only DSPC. The composition DSPC:DSPG:DSPE-PEG2k 30:60:10 (molar ratio) was the most stable with an effective half-life of 9.12 min, compared to bubbles without DSPG, which had half-life of 2.05 min. Bubble attenuation of US depended highly on the compositions. Bubbles without DSPG had the highest attenuation indicating higher oscillation the most but were also destroyed by higher energy US. No bubbles with DSPG showed any indication of destruction but all had increased attenuations to varying degrees, DSPC:DSPG:DSPE-PEG2k 45:45:10 showed the least attenuation.


Assuntos
Portadores de Fármacos/química , Microbolhas , Fosfatidilcolinas/química , Fosfatidilgliceróis/química , Ondas Ultrassônicas , Composição de Medicamentos/métodos , Estabilidade de Medicamentos , Etanolamina/química , Fluorocarbonos/química , Liofilização/métodos , Lipossomos/química , Tamanho da Partícula , Polietilenoglicóis/química
12.
Biomed Opt Express ; 9(4): 1570-1581, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29675302

RESUMO

For transillumination imaging of animal tissues, we have attempted to suppress the scattering effect in a turbid medium using the time-reversal principle of phase-conjugate light. We constructed a digital phase-conjugate system to enable intensity modulation and phase modulation. Using this system, we clarified the effectiveness of the intensity information for restoration of the original light distribution through a turbid medium. By varying the scattering coefficient of the medium, we clarified the limit of time-reversal ability with intensity information of the phase-conjugate light. Experiment results demonstrated the applicability of the proposed technique to animal tissue.

13.
PLoS One ; 12(11): e0188093, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29190688

RESUMO

Non-muscle invasive bladder cancer is one of the most common tumors of the urinary tract. Despite the current multimodal therapy, recurrence and progression of disease have been challenging problems. We hereby introduced a new approach, ultrasound-assisted intravesical chemotherapy, intravesical instillation of chemotherapeutic agents and microbubbles followed by ultrasound exposure. We investigated the feasibility of the treatment for non-muscle invasive bladder cancer. In order to evaluate intracellular delivery and cytotoxic effect as a function to the thickness, we performed all experiments using a bladder cancer mimicking 3D culture model. Ultrasound-triggered microbubble cavitation increased both the intracellular platinum concentration and the cytotoxic effect of cisplatin at the thickness of 70 and 122 µm of the culture model. The duration of enhanced cytotoxic effect of cisplatin by ultrasound-triggered microbubble cavitation was approximately 1 hr. Based on the distance and duration of delivery, we further tested the feasibility of repetition of the treatment. Triple treatment increased the effective distance by 1.6-fold. Our results clearly showed spatial and temporal profile of delivery by ultrasound-triggered microbubble cavitation in a tumor-mimicking structure. Furthermore, we demonstrated that the increase in intracellular concentration results in the enhancement of the cytotoxic effect in a structure with the certain thickness. Repetition of ultrasound exposure would be treatment of choice in future clinical application. Our results suggest ultrasound-triggered microbubble cavitation can be repeatable and is promising for the local control of non-muscle invasive bladder cancer.


Assuntos
Antineoplásicos/administração & dosagem , Cisplatino/administração & dosagem , Ultrassom , Neoplasias da Bexiga Urinária/tratamento farmacológico , Humanos
14.
Artigo em Inglês | MEDLINE | ID: mdl-27623577

RESUMO

A high-speed in situ microscopic observation system developed for basic studies on mechanisms of sonoporation is introduced in this paper. The main part of the system is an inverted-type fluorescence microscope, and a high-speed camera of 20 MHz in a maximum framing rate was used to visualize the dynamics of cavitation bubbles that causes a sonoporation effect. Differential interference contrast and fluorescence techniques were used for sensitive visualization of cell changes during sonoporation. The system is also equipped with optical tweezers that can move a microbubble of several microns in size by using a donut-shaped light beam. In situ microscopic observation of sonoporation was carried out using a cell with a size- and position-controlled microbubble. The experimental results showed that the ability of cells to repair sonoporation-induced damage depends on their membrane tension, indicating the usefulness of the observation system as a basic tool for the investigation of sonoporation phenomena.

15.
J Phys Ther Sci ; 28(4): 1134-41, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27190441

RESUMO

[Purpose] This study verified that the smoothness of reaching movements is able to quantitatively evaluate the effects of two- and three-dimensional images on movement in healthy people. In addition, clinical data of cerebrovascular accident patients were also analyzed by the same method. [Subjects] Ten healthy adult volunteers and two male patients with previous cerebrovascular accidents participated. [Methods] The subjects were tasked with reaching for objects shown on a display. The target and virtual limb, rendered with computer graphics, were shown on the display. Movements of the virtual limb were synchronized with those of the subject. Healthy subjects reached for targets with their dominant arm, and cerebrovascular accident patients used their paretic arm. A polarized display and polarized glasses were used when the subjects were shown three-dimensional images. In the present study, jerk cost was used to quantify the smoothness of movement. [Results] Six of the 10 healthy subjects had significantly smoother reaching movements when viewing the three-dimensional images. The two cerebrovascular accident patients tended to have smoother movements in response to the three-dimensional images. [Conclusion] Analysis of the smoothness of movement was able to detect the influence of the depth cue in vision on movement quantitatively for the healthy subjects and cerebrovascular accident patients.

16.
Ultrasound Med Biol ; 41(9): 2458-65, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26071619

RESUMO

Because it is highly infiltrative, malignant glioma is a cancer with a poor prognosis despite multidisciplinary treatment strategies, such as aggressive surgery and chemoradiotherapy, necessitating new therapeutic approaches to control migration of tumor cells. In our study, we investigated the efficacy of sonodynamic therapy of glioma cells in vitro using porphyrin derivatives, including 5-aminolevulinic acid, protoporphyrin IX and talaporfin sodium, as sonosensitizers. These substances have been known to accumulate in glioma cells and are expected to have cytotoxic effects on sonication. Our study found that the cytotoxicity of sonication of glioma cells is enhanced by each sonosensitizer and that the efficacy of sonodynamic therapy may depend on the degree of intracellular accumulation of sonosensitizer. Also, the study suggests that induction of apoptosis is a major mechanism underlying cell death. Though further investigations are necessary, our preliminary result indicates a potential for sonodynamic therapy with sonosensitizers in glioma treatment.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Ablação por Ultrassom Focalizado de Alta Intensidade/métodos , Porfirinas/uso terapêutico , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Glioma/diagnóstico por imagem , Glioma/patologia , Radiossensibilizantes/uso terapêutico , Ratos , Resultado do Tratamento , Ultrassonografia
17.
Ultrasound Med Biol ; 41(7): 2071-81, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25842256

RESUMO

A simple technique designed for visualization of ultrasound fields without Schlieren optics is introduced. An optical system of direct shadowgraphy with diverging light, which consists of a point light source and a shadow screen, constituted the basic system, but the screen was replaced by focusing optics: a camera that makes a virtual screen at its focus plane. The proposed technique visualizes displacement of light deflected by ultrasound, and the use of focusing optics enables flexible settings of the virtual screen position and optical magnification. Insufficient sensitivity of shadowgraphy was overcome by elimination of non-deflecting light using image subtraction of shadowgrams taken with and without ultrasound exposure. A 1-MHz focused transducer for ultrasound therapy and a 20-MHz miniature transducer for intravascular imaging were used for experiments, and alternate pressure change in short-pulsed ultrasound was visualized, indicating the usefulness of the proposed technique for evaluation of medical ultrasound fields.


Assuntos
Iluminação/instrumentação , Dispositivos Ópticos , Refratometria/instrumentação , Ondas Ultrassônicas , Ultrassonografia/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Reprodutibilidade dos Testes , Espalhamento de Radiação , Sensibilidade e Especificidade
18.
J Med Ultrason (2001) ; 41(1): 11-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27277628

RESUMO

PURPOSE: The aim of this study was to clarify whether ultrasound image-guided cisplatin delivery with an intratumor microbubble injection enhances the antitumor effect in a xenograft mouse model. METHODS: Canine thyroid adenocarcinoma cells were used for all experiments. Before in vivo experiments, the cisplatin and microbubble concentration and ultrasound exposure time were optimized in vitro. For in vivo experiments, cells were implanted into the back of nude mice. Observed by a diagnostic ultrasound machine, a mixture of cisplatin and ultrasound contrast agent, Sonazoid, microbubbles was injected directly into tumors. The amount of injected cisplatin and microbubbles was 1 µg/tumor and 1.2 × 10(7) microbubbles/tumor, respectively, with a total injected volume of 20 µl. Using the same diagnostic machine, tumors were exposed to ultrasound for 15 s. The treatment was repeated four times. RESULTS: The combination of cisplatin, microbubbles, and ultrasound significantly delayed tumor growth as compared with no treatment (after 18 days, 157 ± 55 vs. 398 ± 49 mm(3), P = 0.049). Neither cisplatin alone nor the combination of cisplatin and ultrasound delayed tumor growth. The treatment did not decrease the body weight of mice. CONCLUSION: Ultrasound image-guided anticancer drug delivery may enhance the antitumor effects of drugs without obvious side effects.

19.
20.
J Med Ultrason (2001) ; 41(4): 411-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27278021

RESUMO

PURPOSE: As basic studies to realize in vivo sonoporation, rates of cell membrane damage during sonoporation were evaluated using monolayer cells cultured on scaffolds with different degrees of stiffness. METHODS: Four types of scaffolds, constructed using collagen gel, 10 and 30 % acrylamide gels, and a coverslip, were used for cultivation of monolayer cells. Young's moduli measured using an atomic force microscope were in the range 0.09-8.6 kPa for the gel scaffolds, whereas Young's modulus for living cells was 4.5 kPa. Cells with attached microbubbles were exposed to one-shot pulsed ultrasound of 8.0/-1.3 MPa in peak positive/negative pressures with durations of 3, 100, and 10,000 cycles. RESULTS: Cell membrane damage was visualized by fluorescence microscopy using propidium iodide. The 3-cycle ultrasound pulse had no significant effect; however, the rates of damage caused by 100-cycle and 10,000-cycle pulses showed a strong tendency for higher rates of damage with a higher Young's modulus. CONCLUSION: The experimental results indicate that the stiffness of the underlying layer of adherent cells should be considered as an essential parameter of the sonoporation condition and that the optimum exposure conditions for in vivo sonoporation should be determined with consideration of the physical properties of underlying tissues.


Assuntos
Técnicas de Cultura de Células/instrumentação , Membrana Celular/fisiologia , Alicerces Teciduais , Ondas Ultrassônicas , Acrilamida , Linhagem Celular Tumoral , Membrana Celular/patologia , Células Cultivadas , Colágeno , Corantes , Elasticidade , Géis , Humanos , Microbolhas , Microscopia Confocal , Microscopia de Fluorescência , Propídio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...