Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541456

RESUMO

High-temperature wetting of natural, high-purity quartz (SiO2) and liquid magnesium (Mg) was investigated at temperatures between 973 and 1273 K. Sessile drop experiments using the capillary purification (CP) procedure were carried out under an Ar gas atmosphere (N6.0), eliminating the native oxide layer on the surface of Mg melt. The results showed that the wetting behavior was strongly dependent on temperature. At 973 and 1073 K, the wetting system displayed relatively large contact angles of 90° and 65°, respectively, demonstrating modest wetting. The wetting increased to some extent by increasing the temperature to 1123 K with a wetting angle of 22°. However, the SiO2/Mg system demonstrated complete wetting at temperatures of 1173 K and above. Furthermore, interface microstructure examination showed different reaction product phases/microstructures, depending on the wetting experiment temperature.

2.
Materials (Basel) ; 15(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35057123

RESUMO

The recovery of Mn and Al from two industrial waste of ferromanganese and aluminum production processes was investigated via implementing a high temperature smelting-aluminothermic reduction process. The experiments were carried out with or without CaO flux addition, and two dross qualities. It was observed that the prepared mixtures of the materials yield homogeneous metal and slag products in terms of chemical composition and the distribution of phases. However, the separation of produced metal phase from the slag at elevated temperatures occurs when a higher amount of CaO is added. Viscosity calculations and equilibrium study indicated that the better metal and slag separation is obtained when the produced slag has lower viscosity and lower liquidus. It was found that the process yields Al-Mn-Si alloys, and it is accompanied with complete recovery of Mn, Si and Fe and the unreacted Al in the process. Moreover, the quality of metal product was less dependent on the slightly different dross quality, and the concentration of minor Ca in metal is slightly increased with significant increase of CaO in the slag phase.

3.
Materials (Basel) ; 14(15)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34361311

RESUMO

The valorization of aluminum dross for Al recovery was performed via its mixing with metallic copper to produce Al-Cu alloys. This approach was with the intention of establishing a new smelting process to treat the dross with Cu scrap use. To evaluate the high temperature interaction of the materials, the wettability of a Cu-containing aluminum alloy with the non-metallic components of the dross was studied by the sessile drop method. It was found that the wetting was weak via temperature changes at 973-1373 K, and consequently no proper metal separation occurred. To better separate the metallic and non-metallic phases with larger density differences, a higher Cu portion was considered to obtain a significantly denser metallic phase, and it was found that partial separation of the Al in an Al-Cu alloy is possible. The complete separation of the metallic components of the dross was, however, experienced by the dross and copper melting with the addition of pre-melted calcium aluminate slags at elevated temperatures. It was found that Al-Cu alloys were produced and separated from the adjacent slags, and the aluminum oxide of the dross ended up in the slag phase. Moreover, the characteristics of the produced slags depend on the process charge.

4.
Materials (Basel) ; 14(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33450929

RESUMO

The aluminothermic reduction process of manganese oxide from different slags by aluminum was investigated using pure Al and two types of industrial Al dross. Two types of MnO-containing slags were used: a synthetic highly pure CaO-MnO slag and an industrial high carbon ferromanganese slag. Mixtures of Al and slag with more Al than the stoichiometry were heated and interacted in an induction furnace up to 1873 K, yielding molten metal and slag products. The characterization of the produced metal and slag phases indicated that the complete reduction of MnO occurs via the aluminothermic process. Moreover, as the Al content in the charge was high, it also completely reduced SiO2 in the industrial ferromanganese slag. A small mass transport of Ca and Mg into the metal phase was also observed, which was shown to be affected by the slag chemistry. The obtained results indicated that the valorization of both Al dross and FeMn slag in a single process for the production of Mn, Mn-Al, and Mn-Al-Si alloys is possible. Moreover, the energy balance for the process indicated that the energy consumption of the process to produce Mn-Al alloys via the proposed process is insignificant due to the highly exothermic reactions at high temperatures.

5.
Materials (Basel) ; 13(5)2020 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-32155942

RESUMO

To succeed in the design and optimization of liquid-assisted processes such as reactive infiltration for the fabrication of tailored refractory SiC/ZrSi2 composites, the interfacial phenomena that occur when Si-rich Si-Zr alloys are in contact with glassy carbon (GC) were investigated for the first time by the sessile drop method at T = 1450 °C. Specifically, two different Si-rich Si-Zr alloys were selected, and the obtained results in terms of wettability, spreading kinetics, reactivity, and developed interface microstructures were compared with experimental observations that were previously obtained for the liquid Si-rich, Si-Zr, near-eutectic composition (i.e., Si-10 at.%Zr) that was processed under the same operating conditions. The increase of the Si content only weakly affected the overall phenomena that were observed at the interface. From the practical point of view, this means that even Si-Zr alloys with a higher Si content, with respect to the near eutectic alloy, may be potentially used as infiltrant materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...