Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 7: 291-8, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26981550

RESUMO

The aliphatic-aromatic copolyester poly(butylene adipate-co-butylene terephthalate) (PBAT), also known as ecoflex, contains adipic acid, 1,4-butanediol and terephthalic acid and is proven to be compostable [1], [2], [3]). We describe here data for the synthesis and analysis of poly(butylene adipate-co-butylene terephthalate variants with different adipic acid:terephatalic acid ratios and 6 oligomeric PBAT model substrates. Data for the synthesis of the following oligomeric model substrates are described: mono(4-hydroxybutyl) terephthalate (BTa), bis(4-(hexanoyloxy)butyl) terephthalate (HaBTaBHa), bis(4-(decanoyloxy)butyl) terephthalate (DaBTaBDa), bis(4-(tetradecanoyloxy)butyl) terephthalate (TdaBTaBTda), bis(4-hydroxyhexyl) terephthalate (HTaH) and bis(4-(benzoyloxy)butyl) terephthalate (BaBTaBBa). Polymeric PBAT variants were synthesized with adipic acid:terephatalic acid ratios of 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. These polymeric and oligomeric substances were used as ecoflex model substrates in enzymatic hydrolysis experiments in the article "Substrate specificities of cutinases on aliphatic-aromatic polyesters and on their model substrates" [4].

2.
Environ Sci Technol ; 50(6): 2899-907, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26878094

RESUMO

Recently, a variety of biodegradable polymers have been developed as alternatives to recalcitrant materials. Although many studies on polyester biodegradability have focused on aerobic environments, there is much less known on biodegradation of polyesters in natural and artificial anaerobic habitats. Consequently, the potential of anaerobic biogas sludge to hydrolyze the synthetic compostable polyester PBAT (poly(butylene adipate-co-butylene terephthalate) was evaluated in this study. On the basis of reverse-phase high-performance liquid chromatography (RP-HPLC) analysis, accumulation of terephthalic acid (Ta) was observed in all anaerobic batches within the first 14 days. Thereafter, a decline of Ta was observed, which occurred presumably due to consumption by the microbial population. The esterase Chath_Est1 from the anaerobic risk 1 strain Clostridium hathewayi DSM-13479 was found to hydrolyze PBAT. Detailed characterization of this esterase including elucidation of the crystal structure was performed. The crystal structure indicates that Chath_Est1 belongs to the α/ß-hydrolases family. This study gives a clear hint that also micro-organisms in anaerobic habitats can degrade manmade PBAT.


Assuntos
Proteínas de Bactérias/metabolismo , Clostridium/enzimologia , Poluentes Ambientais/química , Esterases/metabolismo , Poliésteres/metabolismo , Adipatos/química , Adipatos/metabolismo , Proteínas de Bactérias/genética , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Esterases/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Poliésteres/química
3.
N Biotechnol ; 33(2): 295-304, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26594021

RESUMO

The enzymatic hydrolysis of the biodegradable polyester ecoflex and of a variety of oligomeric and polymeric ecoflex model substrates was investigated. For this purpose, substrate specificities of two enzymes of typical compost inhabitants, namely a fungal cutinase from Humicola insolens (HiC) and a bacterial cutinase from Thermobifida cellulosilytica (Thc_Cut1) were compared. Model substrates were systematically designed with variations of the chain length of the alcohol and the acid as well as with varying content of the aromatic constituent terephthalic acid (Ta). HPLC/MS identification and quantification of the hydrolysis products terephthalic acid (Ta), benzoic acid (Ba), adipic acid (Ada), mono(4-hydroxybutyl) terephthalate (BTa), mono-(2-hydroxyethyl) terephthalate (ETa), mono-(6-hydroxyhexyl) terephthalate (HTa) and bis(4-hydroxybutyl) terephthalate (BTaB) indicated that these enzymes indeed hydrolyze the tested esters. Shorter terminal chain length acids but longer chain length alcohols in oligomeric model substrates were generally hydrolyzed more efficiently. Thc_Cut1 hydrolyzed aromatic ester bonds more efficiently than HiC resulting in up to 3-fold higher concentrations of the monomeric hydrolysis product Ta. Nevertheless, HiC exhibited a higher overall hydrolytic activity on the tested polyesters, resulting in 2-fold higher concentration of released molecules. Thermogravimetry and differential scanning calorimetry (TG-DSC) of the polymeric model substrates revealed a general trend that a lower difference between melting temperature (Tm) and the temperature at which the enzymatic degradation takes place resulted in higher susceptibility to enzymatic hydrolysis.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Plásticos Biodegradáveis/metabolismo , Hidrolases de Éster Carboxílico/química , Proteínas Fúngicas/química , Poliésteres/metabolismo , Microbiologia do Solo , Sordariales/enzimologia , Biodegradação Ambiental , Hidrólise , Cinética , Ácidos Ftálicos/metabolismo , Polietilenotereftalatos/metabolismo , Especificidade por Substrato , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...