Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 86(3): 033302, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832218

RESUMO

Proton radiography is a useful diagnostic of high energy density (HED) plasmas under active theoretical and experimental development. In this paper, we describe a new simulation tool that interacts realistic laser-driven point-like proton sources with three dimensional electromagnetic fields of arbitrary strength and structure and synthesizes the associated high resolution proton radiograph. The present tool's numerical approach captures all relevant physics effects, including effects related to the formation of caustics. Electromagnetic fields can be imported from particle-in-cell or hydrodynamic codes in a streamlined fashion, and a library of electromagnetic field "primitives" is also provided. This latter capability allows users to add a primitive, modify the field strength, rotate a primitive, and so on, while quickly generating a high resolution radiograph at each step. In this way, our tool enables the user to deconstruct features in a radiograph and interpret them in connection to specific underlying electromagnetic field elements. We show an example application of the tool in connection to experimental observations of the Weibel instability in counterstreaming plasmas, using ∼10(8) particles generated from a realistic laser-driven point-like proton source, imaging fields which cover volumes of ∼10 mm(3). Insights derived from this application show that the tool can support understanding of HED plasmas.

2.
Sci Rep ; 4: 5214, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24909903

RESUMO

Here, we report results of an experiment creating a transient, highly correlated carbon state using a combination of optical and x-ray lasers. Scattered x-rays reveal a highly ordered state with an electrostatic energy significantly exceeding the thermal energy of the ions. Strong Coulomb forces are predicted to induce nucleation into a crystalline ion structure within a few picoseconds. However, we observe no evidence of such phase transition after several tens of picoseconds but strong indications for an over-correlated fluid state. The experiment suggests a much slower nucleation and points to an intermediate glassy state where the ions are frozen close to their original positions in the fluid.

3.
Phys Rev Lett ; 110(14): 145005, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-25167001

RESUMO

Rapid electron and ion heating is observed in collisionless counterstreaming plasma flows and explained via a novel heating mechanism that couples the electron and ion temperatures. Recent experiments measure plasma conditions 4 mm from the surface of single foil (single plasma stream) and double foils (two counterstreaming plasmas) targets using Thomson scattering. Significant increases in electron and ion temperatures (from <100 eV to >1 keV) compared to the single foil geometry are observed. While electrons are heated by friction on opposite going ions, ion-ion collisions cannot explain the observed ion heating. Also, density and flow velocity measurements show negligible slow down and rule out stagnation. The nonlinear saturation of an acoustic two-stream electrostatic instability is predicted to couple the ion temperature to the electron temperature through the dynamic evolution of the instability threshold. Particle-in-cell simulations including both collisional and collisionless effects are compared to the experimental measurements and show rapid electron and ion heating consistent with the experimental measurements.

4.
Rev Sci Instrum ; 83(10): 101301, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126744

RESUMO

Proton imaging is commonly used to reveal the electric and magnetic fields that are found in high energy density plasmas. Presented here is an analysis of this technique that is directed towards developing additional insight into the underlying physics. This approach considers: formation of images in the limits of weak and strong intensity variations; caustic formation and structure; image inversion to obtain line-integrated field characteristics; direct relations between images and electric or magnetic field structures in a plasma; imaging of sharp features such as Debye sheaths and shocks. Limitations on spatial and temporal resolution are assessed, and similarities with optical shadowgraphy are noted. Synthetic proton images are presented to illustrate the analysis. These results will be useful for quantitatively analyzing experimental proton imaging data and verifying numerical codes.

5.
Rev Sci Instrum ; 83(10): 10E323, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23126981

RESUMO

Simultaneous Thomson scattering measurements of collective electron-plasma and ion-acoustic fluctuations have been utilized to determine ion species fraction from laser produced CH plasmas. The CH(2) foil is heated with 10 laser beams, 500 J per beam, at the Omega Laser facility. Thomson scattering measurements are made 4 mm from the foil surface using a 30 J 2ω probe laser with a 1 ns pulse length. Using a series of target shots the plasma evolution is measured from 2.5 ns to 9 ns after the rise of the heater beams. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the two-ion species theoretical form factor for the ion feature such that the ion temperature, plasma flow velocity and ion species fraction are determined. The ion species fraction is determined to an accuracy of ±0.06 in species fraction.

6.
Rev Sci Instrum ; 83(10): 10E523, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23127030

RESUMO

A 10-ps, 263-nm (4ω) laser is being built to probe plasmas produced on the OMEGA EP [J. H. Kelly, L. J. Waxer, V. Bagnoud, I. A. Begishev, J. Bromage, B. E. Kruschwitz, T. E. Kessler, S. J. Loucks, D. N. Maywar, R. L. McCrory et al., J. Phys. IV France 133, 75-80 (2006)]. A suite of optical diagnostics (schlieren, interferometry, and grid image refractometry) has been designed to diagnose and characterize a wide variety of plasmas. Light scattered by the probe beam is collected by an f/4 catadioptric telescope and a transport system is designed to image with a near-diffraction-limited resolution (~1 - µm full width at half maximum) over a 5-mm field of view to a diagnostic table. The transport system provides a contrast greater than 1 : 10(4) with respect to all wavelengths outside of the 263 ± 2 nm measurement range.

7.
Rev Sci Instrum ; 81(10): 10D518, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21033873

RESUMO

A scalable setup using injection by frequency conversion to establish a multipassing cavity for noncollective Thomson scattering on low density plasmas is presented. The cavity is shown to support >10 passes through the target volume with a 400% increase in energy on target versus a single-pass setup. Rayleigh scattering experiments were performed and demonstrate the viability of the cell to study low density plasmas of the order of 10(12)-10(13) cm(-3). A high-repetition, low-energy, single-pass Thomson scattering setup was also performed on the University of California, Los Angeles Large Plasma Device and shows that the multipass cavity could have a significant advantage over the high-repetition approach due to the cavity setup's inherently higher signal per shot.

8.
Rev Sci Instrum ; 81(10): 10E526, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21034054

RESUMO

Two-dimensional monochromatic images of fast-electron stimulated Ar Kα and He-α x-ray self-emission have recorded a time-integrated map of the extent of Ar(≈6+) and Ar(16+) ions, respectively, within a high density (10(20) cm(-3) atomic density) Ar plasma. This plasma was produced by irradiating a 2 mm wide clustering Ar gas jet with an ultrahigh intensity (10(19) W/cm(2), 50 TW) Ti:sapphire laser operating at 800 nm. Spherically bent quartz crystals in the 200 (for Kα) and 201 (for He-α) planes were used as near-normal incidence reflective x-ray optics. We see that a large (830 µm long) region of plasma emits Kα primarily along the laser axis, while the He-α emission is confined to smaller hot spot (230 µm long) region that likely corresponds to the focal volume of the f/8 laser beam. X-ray spectra from a Bragg spectrometer operating in the von Hamos geometry indicate that the centroids of the Kα and He-α emission regions are separated by approximately 330 µm along the laser axis.

9.
Phys Rev Lett ; 105(26): 265701, 2010 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-21231678

RESUMO

Laser-produced proton beams have been used to achieve ultrafast volumetric heating of carbon samples at solid density. The isochoric melting of carbon was probed by a scattering of x rays from a secondary laser-produced plasma. From the scattering signal, we have deduced the fraction of the material that was melted by the inhomogeneous heating. The results are compared to different theoretical approaches for the equation of state which suggests modifications from standard models.

10.
Rev Sci Instrum ; 80(11): 113505, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19947729

RESUMO

A three-axis, 2.5 mm overall diameter differential magnetic probe (also known as B-dot probe) is discussed in detail from its design and construction to its calibration and use as diagnostic of fast transient effects in exploding plasmas. A design and construction method is presented as a means to reduce stray pickup, eliminate electrostatic pickup, reduce physical size, and increase magnetic signals while maintaining a high bandwidth. The probe's frequency response is measured in detail from 10 kHz to 50 MHz using the presented calibration method and compared to theory. The effect of the probe's self-induction as a first order correction in frequency, O(omega), on experimental signals and magnetic field calculations is discussed. The probe's viability as a diagnostic is demonstrated by measuring the magnetic field compression and diamagnetism of a sub-Alfvenic (approximately 500 km/s, M(A) approximately 0.36) flow created from the explosion of a high-density energetic laser plasma through a cooler, low-density, magnetized ambient plasma.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(6 Pt 2): 066406, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20365285

RESUMO

We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

12.
Rev Sci Instrum ; 79(10): 10E311, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044473

RESUMO

We used Kr K alpha (12.6 keV), Zr K alpha (15.7 keV), and Ag K alpha (22.2 keV) x-rays, produced by petawatt-class laser pulses, to measure the integrated crystal reflectivity R(int) of flat highly oriented pyrolytic graphite (HOPG) up to the fifth order. The maximum R(int) was observed in first order (3.7 mrad at 12.6 keV), decreasing by a factor of 3-5 for every successive order, and dropping by a factor of 2-2.5 at 22.2 keV. The current study indicates that HOPG crystals are suitable for measuring scattering signals from high energy x-ray sources (E > or = 20 keV). These energies are required to penetrate through the high density plasma conditions encountered in inertial confinement fusion capsule implosions on the National Ignition Facility.

13.
Rev Sci Instrum ; 79(10): 10E917, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19044572

RESUMO

A high contrast 12.6 keV Kr K alpha source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (K alpha to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10(-5). Filtered shadowgraphy indicates that the Kr K alpha and K beta x rays are emitted from a roughly 1x2 mm(2) emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70 eV (i.e., mean ionization state 13-16), based on the observed ratio of K alpha to K beta. Kr gas jets provide a debris-free high energy K alpha source for time-resolved diagnosis of dense matter.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...