Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Indian J Microbiol ; 61(1): 108-110, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33505101

RESUMO

No one questions the existence of presumptive knowledge of invisible organisms causing disease, decay and destruction mentioned before the discovery of the microbial world by Antonie Van Leeuwenhoek, who was the first to describe the invisible world as per literature available today. However, the knowledge about microbial world by Indian Rishis presented in Sanskrit shlokas or suktas of our traditional manuscripts such as Vedas remained unseen, where the Rishis had predicted the role of microorganisms known as Krimi or Jeevanu years before Leeuwenhoek. This note is an attempt to bring an emphasis to revisit our traditional Vedic knowledge and establish them through research based facts for wider acceptance globally.

2.
Artigo em Inglês | MEDLINE | ID: mdl-28607028

RESUMO

Despite recent advances in diagnostic and therapeutic methods in antifungal research, aspergillosis still remains a leading cause of morbidity and mortality. One strategy to address this problem is to enhance the activity spectrum of known antifungals, and we now report the first successful application of Candida antarctica lipase (CAL) for the preparation of optically enriched fluconazole analogues. Anti-Aspergillus activity was observed for an optically enriched derivative, (-)-S-2-(2',4'-difluorophenyl)-1-hexyl-amino-3-(1‴,2‴,4‴)triazol-1‴-yl-propan-2-ol, which exhibits MIC values of 15.6 µg/ml and 7.8 µg/disc in broth microdilution and disc diffusion assays, respectively. This compound is tolerated by mammalian erythrocytes and cell lines (A549 and U87) at concentrations of up to 1,000 µg/ml. When incorporated into dextran nanoparticles, the novel, optically enriched fluconazole analogue exhibited improved antifungal activity against Aspergillus fumigatus (MIC, 1.63 µg/ml). These results not only demonstrate the ability of biocatalytic approaches to yield novel, optically enriched fluconazole derivatives but also suggest that enantiomerically pure fluconazole derivatives, and their nanotized counterparts, exhibiting anti-Aspergillus activity may have reduced toxicity.


Assuntos
Antifúngicos/farmacologia , Aspergilose/tratamento farmacológico , Aspergillus fumigatus/efeitos dos fármacos , Fluconazol/análogos & derivados , Fluconazol/farmacologia , Células A549 , Linhagem Celular , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Fluconazol/efeitos adversos , Proteínas Fúngicas/metabolismo , Humanos , Lipase/metabolismo , Nanopartículas/química
3.
Molecules ; 21(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834873

RESUMO

Highly regioselective acylation has been observed in 7,8-dihydroxy-4-methylcoumarin (DHMC) by the lipase from Rhizopus oryzae suspended in tetrahydrofuran (THF) at 45 °C using six different acid anhydrides as acylating agents. The acylation occurred regioselectively at one of the two hydroxy groups of the coumarin moiety resulting in the formation of 8-acyloxy-7-hydroxy-4-methylcoumarins, which are important bioactive molecules for studying biotansformations in animals, and are otherwise very difficult to obtain by only chemical steps. Six monoacylated, monohydroxy 4-methylcoumarins have been biocatalytically synthesised and identified on the basis of their spectral data and X-ray crystal analysis.


Assuntos
Cumarínicos/química , Cumarínicos/síntese química , Proteínas Fúngicas/química , Lipase/química , Rhizopus/enzimologia , Cristalografia por Raios X , Ésteres/síntese química , Ésteres/química , Estrutura Molecular
4.
3 Biotech ; 3(5): 365-372, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28324332

RESUMO

Lignocelluloses from agricultural, industrial, and forest residues constitute a majority of the total biomass present in the world. Environmental concerns of disposal, costly pretreatment options prior to disposal, and increased need to save valuable resources have led to the development of value-added alternate technologies such as bioethanol production from lignocellulosic wastes. In the present study, biologically pretreated (with the fungus, Pleurotus ostreatus HP-1) and chemically pretreated (with mild acid or dilute alkali) wheat straw (WS) and banana stem (BS) were subsequently subjected to enzymatic saccharification (with mixture of 6.0 U/g of filter paper cellulase and 17 U/g of ß-glucosidase) and were evaluated for bioethanol production using Saccharomyces cerevisiae NCIM 3570. Biological and chemical pretreatments removed up to 4.0-49.2 % lignin from the WS and BS which was comparatively higher than that for cellulose (0.3-12.4 %) and for hemicellulose (0.7-21.8 %) removal with an average 5.6-49.5 % dry matter loss. Enzymatic hydrolysis yielded 64-306.6 mg/g (1.5-15 g/L) reducing sugars from which 0.15-0.54 g/g ethanol was produced from Saccharomyces cerevisiae NCIM 3570.

5.
Naturwissenschaften ; 98(6): 457-72, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21475941

RESUMO

Methanogens, the members of domain Archaea are potent contributors in global warming. Being confined to the strict anaerobic environment, their direct cultivation as pure culture is quite difficult. Therefore, a range of culture-independent methods have been developed to investigate their numbers, substrate uptake patterns, and identification in complex microbial communities. Unlike other approaches, fluorescence in situ hybridization (FISH) is not only used for faster quantification and accurate identification but also to reveal the physiological properties and spatiotemporal dynamics of methanogens in their natural environment. Aside from the methodological aspects and application of FISH, this review also focuses on culture-dependent and -independent techniques employed in enumerating methanogens along with associated problems. In addition, the combination of FISH with micro-autoradiography that could also be an important tool in investigating the activities of methanogens is also discussed.


Assuntos
Archaea/fisiologia , Hibridização in Situ Fluorescente , Técnicas Microbiológicas/métodos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Ribonuclease H/metabolismo
6.
BMC Biotechnol ; 10: 67, 2010 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-20836896

RESUMO

BACKGROUND: White-rot fungi are primarily the major degraders of lignin, a major obstacle for commercial exploitation of plant byproducts to produce bioethanol and other industrially important products. However, to improve their efficacy for lignin degradation, it has become necessary to genetically modify these organisms using appropriate vectors. Agrobacterium tumefaciens, a soil phytopathogenic bacterium, generally transforms plants by delivering a portion of the resident Ti- plasmid, the T-DNA (transfer DNA). The trans-Kingdom gene transfer is initiated by the activity of Ti-plasmid encoded vir (virulence) genes in response to low-molecular-mass phenolic compounds such as acetosyringone. A. tumefaciens played a major role in plant genetic engineering and basic research in molecular biology, accounting for nearly 80% of the transgenic plants produced so far. Initially, it was believed that only dicotyledons, gymnosperms and a few monocotyledonous species could be transformed by this bacterium; but recent reports have totally changed this scenario by demonstrating that many 'recalcitrant' species not included in its natural host range can also be transformed, especially filamentous fungi. RESULTS: This paper describes an efficient and convenient Agrobacterium-mediated gene transformation system for successful delivery of T-DNA, carrying the genes coding for ß-glucuronidase (uidA), green fluorescent protein (gfp) and hygromycin phosphotransferase (hpt) to the nuclear genome of lignin degrading white-rot fungi such as Phanerochaete chrysosporium, Ganoderma sp. RCKK-02, Pycnoporous cinnabarinus, Crinipellis sp. RCK-1, Pleurotus sajor-caju and fungal isolate BHR-UDSC without supplementation of acetosyringone. The fungal transformants were confirmed by PCR and Southern hybridization. The expression vector pCAMBIA 1304-RCKK was constructed by the addition of GPD promoter from plasmid p416 to the binary vector backbone pCAMBIA1304, which controls uidA and gfp gene. Transmission Electron Microscope (TEM) analysis revealed the attachment of bacterial cells to the fungal hyphae. Transformation frequency varied from 50 to 75% depending on the fungal species used in this study. The transformation efficiency was maximum at 20°C whereas no transfer was observed at temperature above 29°C. CONCLUSION: These findings provide a rapid and reproducible transformation method without external addition of acetosyringone, which could be useful for improving white-rot fungi for their various biotechnological applications.


Assuntos
Agrobacterium tumefaciens/genética , Basidiomycota/genética , Lignina/metabolismo , Transformação Genética , Acetofenonas , DNA Bacteriano/genética , Técnicas de Transferência de Genes , Genes Reporter , Vetores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...