Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 326(6): L661-L671, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38349120

RESUMO

It is unclear what effect biological sex has on outcomes of acute lung injury (ALI). Clinical studies are confounded by their observational design. We addressed this knowledge gap with a preclinical systematic review of ALI animal studies. We searched MEDLINE and Embase for studies of intratracheal/intranasal/aerosolized lipopolysaccharide administration (the most common ALI model) that reported sex-stratified data. Screening and data extraction were conducted in duplicate. Our primary outcome was histological tissue injury and secondary outcomes included alveolar-capillary barrier alterations and inflammatory markers. We used a random-effects inverse variance meta-analysis, expressing data as standardized mean difference (SMD) with 95% confidence intervals (CIs). Risk of bias was assessed using the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE) tool. We identified six studies involving 132 animals across 11 independent experiments. A total of 41 outcomes were extracted, with the direction of effect suggesting greater severity in males than females in 26/41 outcomes (63%). One study reported on lung histology and found that male mice exhibited greater injury than females (SMD: 1.61, 95% CI: 0.53-2.69). Meta-analysis demonstrated significantly elevated albumin levels (SMD: 2.17, 95% CI: 0.63-3.70) and total cell counts (SMD: 0.80, 95% CI: 0.27-1.33) in bronchoalveolar lavage fluid from male mice compared with female mice. Most studies had an "unclear risk of bias." Our findings suggest sex-related differences in ALI severity. However, these conclusions are drawn from a small number of animals and studies. Further research is required to address the fundamental issue of biological sex differences in LPS-induced ALI.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/metabolismo , Animais , Lipopolissacarídeos/toxicidade , Feminino , Masculino , Caracteres Sexuais , Camundongos , Fatores Sexuais , Humanos , Modelos Animais de Doenças , Pulmão/patologia , Pulmão/metabolismo
2.
Intensive Care Med Exp ; 11(1): 45, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460911

RESUMO

BACKGROUND: Preclinical sepsis models have been criticized for their inability to recapitulate human sepsis and suffer from methodological shortcomings that limit external validity and reproducibility. The National Preclinical Sepsis Platform (NPSP) is a consortium of basic science researchers, veterinarians, and stakeholders in Canada undertaking standardized multi-laboratory sepsis research to increase the efficacy and efficiency of bench-to-bedside translation. In this study, we aimed to develop and characterize a 72-h fecal-induced peritonitis (FIP) model of murine sepsis conducted in two independent laboratories. The experimental protocol was optimized by sequentially modifying dose of fecal slurry and timing of antibiotics in an iterative fashion, and then repeating the experimental series at site 1 and site 2. RESULTS: Escalating doses of fecal slurry (0.5-2.5 mg/g) resulted in increased disease severity, as assessed by the modified Murine Sepsis Score (MSS). However, the MSS was poorly associated with progression to death during the experiments, and mice were found dead without elevated MSS scores. Administration of early antibiotics within 4 h of inoculation rescued the animals from sepsis compared with late administration of antibiotics after 12 h, as evidenced by 100% survival and reduced bacterial load in peritoneum and blood in the early antibiotic group. Site 1 and site 2 had statistically significant differences in mortality (60% vs 88%; p < 0.05) for the same dose of fecal slurry (0.75 mg/g) and marked differences in body temperature between groups. CONCLUSIONS: We demonstrate a systematic approach to optimizing a 72-h FIP model of murine sepsis for use in multi-laboratory studies. Alterations to experimental conditions, such as dose of fecal slurry and timing of antibiotics, have clear impact on outcomes. Differences in mortality between sites despite rigorous standardization warrants further investigations to better understand inter-laboratory variation and methodological design in preclinical studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...