Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hepatol Commun ; 7(2): e0009, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074875

RESUMO

BACKGROUND AND AIMS: Adeno-associated virus (AAV) vectors are widely used to deliver therapeutic transgenes to distinct tissues, including the liver. Vectors based on naturally occurring AAV serotypes as well as vectors using engineered capsids have shown variations in tissue tropism and level of transduction between different mouse models. Moreover, results obtained in rodents frequently lack translatability into large animal studies. In light of the increasing interest in AAV vectors for human gene therapy, an increasing number of studies are being performed in nonhuman primates. To keep animal numbers to a minimum and thus optimize the process of AAV capsid selection, we developed a multiplex barcoding approach to simultaneously evaluate the in vivo vector performance for a set of serotypes and capsid-engineered AAV vectors across multiple organs. APPROACH AND RESULTS: Vector biodistribution and transgene expression were assessed by quantitative PCR, quantitative reverse transcription PCR, vector DNA amplicon Illumina sequencing and vRNAseq in male and female rhesus macaques simultaneously dosed with a mixture of barcoded naturally occurring or engineered AAV vectors encoding the same transgene. As expected, our findings show animal-to-animal variation in both the biodistribution and tissue transduction pattern, which was partly influenced by each animal's distinctive serological status. CONCLUSIONS: This method offers a robust approach to AAV vector optimization that can be used to identify and validate AAV vectors for gene delivery to potentially any anatomical site or cell type.


Assuntos
Capsídeo , Dependovirus , Animais , Camundongos , Feminino , Masculino , Humanos , Capsídeo/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Distribuição Tecidual , Macaca mulatta/genética , Macaca mulatta/metabolismo , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Terapia Genética/métodos
2.
Mol Ther ; 27(1): 164-177, 2019 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-30391142

RESUMO

Broadly neutralizing antibodies (bNAbs) are among the most promising strategies to achieve long-term control of HIV-1 in the absence of combination antiretroviral therapy. Passive administration of such antibodies in patients efficiently decreases HIV-1 viremia, but is limited by the serum half-life of the protein. Here, we investigated whether antibody-secreting hematopoietic cells could overcome this problem. We genetically modified human CD34+ hematopoietic stem and progenitor cells (HSPCs) to secrete bNAbs and transplanted them into immunodeficient mice. We found that the gene-modified cells engraft and stably secrete antibodies in the peripheral blood of the animals for the 9 months of the study. Antibodies were predominantly expressed by human HSPC-derived T- and B cells. Importantly, we found that secreted PGT128 was able to delay HIV-1 viremia in vivo and also prevent a decline in CD4+ cells. Gene-modified cells were maintained in bone marrow and were also detected in spleen, thymus, lymph nodes, and gut-associated lymphoid tissue. These data indicate that the bNAb secretion from HSPC-derived cells in mice is functional and can affect viral infection and CD4+ cell maintenance. This study paves the way for potential applications to other diseases requiring long-lasting protein or antibody delivery.


Assuntos
Anticorpos Neutralizantes/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Animais , Animais Recém-Nascidos , Antígenos CD34/metabolismo , Linfócitos B/metabolismo , Infecções por HIV/imunologia , Infecções por HIV/metabolismo , Humanos , Antígenos Comuns de Leucócito/metabolismo , Fígado/metabolismo , Tecido Linfoide/metabolismo , Camundongos , RNA Viral/genética , RNA Viral/metabolismo , Linfócitos T/metabolismo , Carga Viral , Viremia/genética , Viremia/metabolismo
3.
Curr Opin HIV AIDS ; 13(5): 446-453, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29878913

RESUMO

PURPOSE OF REVIEW: Combination antiretroviral therapy (ART) has enabled tremendous progress in suppressing HIV replication in infected patients. However, ART alone cannot eradicate HIV and its latent, persisting reservoirs. Novel approaches are needed to eradicate the virus or achieve functional cure in the absence of ART. RECENT FINDINGS: Adoptive T-cell therapies were initially tested in HIV-infected individuals with limited efficiency. Benefiting from new and improved methodologies, an increasing array of CAR T-cell therapies has been successfully developed in the cancer immunotherapy field, demonstrating promising new avenues that could be applied to HIV. Numerous studies have characterized various HIV-specific CAR constructs, types of cytolytic effector cells, and CAR-expressing cells' trafficking to the reservoir compartments, warranting further in-vivo efforts. Notably, the ability of CAR cells to persist and function in low-antigen environments in vivo, that is, in ART-suppressed patients, remains unclear. SUMMARY: Despite promising results in preclinical studies, only a handful of clinical trials have been initiated worldwide. Several obstacles remain prior to successful application of HIV-specific CAR T-cell therapies in patients. In this review, we survey the current state of the field, and address paths towards realizing the goal of an efficacious HIV CAR T-cell product.


Assuntos
Infecções por HIV/imunologia , Infecções por HIV/terapia , HIV/imunologia , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Animais , HIV/genética , Infecções por HIV/genética , Infecções por HIV/virologia , Humanos , Receptores de Antígenos Quiméricos/genética , Linfócitos T/virologia
4.
J Biol Chem ; 289(11): 7630-40, 2014 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-24497632

RESUMO

A previous study from our laboratory reported a preferential conservation of arginine relative to lysine in the C-terminal tail (CTT) of HIV-1 envelope (Env). Despite substantial overall sequence variation in the CTT, specific arginines are highly conserved in the lentivirus lytic peptide (LLP) motifs and are scarcely substituted by lysines, in contrast to gp120 and the ectodomain of gp41. However, to date, no explanation has been provided to explain the selective incorporation and conservation of arginines over lysines in these motifs. Herein, we address the functions in virus replication of the most conserved arginines by performing conservative mutations of arginine to lysine in the LLP1 and LLP2 motifs. The presence of lysine in place of arginine in the LLP1 motif resulted in significant impairment of Env expression and consequently virus replication kinetics, Env fusogenicity, and incorporation. By contrast, lysine exchanges in LLP2 only affected the level of Env incorporation and fusogenicity. Our findings demonstrate that the conservative lysine substitutions significantly affect Env functional properties indicating a unique functional role for the highly conserved arginines in the LLP motifs. These results provide for the first time a functional explanation to the preferred incorporation of arginine, relative to lysine, in the CTT of HIV-1 Env. We propose that these arginines may provide unique functions for Env interaction with viral or cellular cofactors that then influence overall Env functional properties.


Assuntos
Arginina/química , Proteína gp41 do Envelope de HIV/química , HIV-1/química , Peptídeos/química , Motivos de Aminoácidos , Fusão Celular , Separação Celular , Clonagem Molecular , Biologia Computacional , Citometria de Fluxo , Células HEK293 , HIV-1/fisiologia , Humanos , Cinética , Lisina/química , Modelos Moleculares , Mutagênese , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Replicação Viral
5.
Viruses ; 6(1): 284-300, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24441863

RESUMO

Retroviruses are a family of viruses that cause a broad range of pathologies in animals and humans, from the apparently harmless, long-term genomic insertion of endogenous retroviruses, to tumors induced by the oncogenic retroviruses and acquired immunodeficiency syndrome (AIDS) resulting from human immunodeficiency virus infection. Disease can be the result of diverse mechanisms, including tumorigenesis induced by viral oncogenes or immune destruction, leading to the gradual loss of CD4 T-cells. Of the virally encoded proteins common to all retroviruses, the envelope (Env) displays perhaps the most diverse functionality. Env is primarily responsible for binding the cellular receptor and for effecting the fusion process, with these functions mediated by protein domains localized to the exterior of the virus. The remaining C-terminal domain may have the most variable functionality of all retroviral proteins. The C-terminal domains from three prototypical retroviruses are discussed, focusing on the different structures and functions, which include fusion activation, tumorigenesis and viral assembly and lifecycle influences. Despite these genetic and functional differences, however, the C-terminal domains of these viruses share a common feature in the modulation of Env ectodomain conformation. Despite their differences, perhaps each system still has information to share with the others.


Assuntos
Retroviridae/fisiologia , Proteínas do Envelope Viral/metabolismo , Ligação Viral , Internalização do Vírus , Animais , Humanos , Estrutura Terciária de Proteína , Proteínas do Envelope Viral/genética , Montagem de Vírus
6.
Carcinogenesis ; 34(11): 2664-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23784080

RESUMO

Telomerase activity in cancer cells is dependent on the transcriptional regulation of the human telomerase reverse transcriptase (hTERT) gene, encoding the catalytic subunit of human telomerase. We have shown previously that HTLV-1 basic leucine zipper (HBZ), a viral regulatory protein encoded by the human retrovirus, human T-cell leukemia virus, type 1 (HTLV-1) cooperates with JunD to enhance hTERT transcription in adult T-cell leukemia (ATL) cells. Menin, the product of the tumor-suppressor MEN-1 gene, also interacts with JunD, represses its transcriptional activity and downregulates telomerase expression. The main objective of this study was to examine how menin and HBZ get involved in the regulation of hTERT transcription. In this study, we report that JunD and menin form a repressor complex of hTERT transcription in HBZ-negative cells. Conversely, in HBZ-positive cells, the formation of a JunD/HBZ/menin ternary complex and the recruitment of p300 histone acetyl transferase activity by HBZ lead to a decreased activity of the JunD-menin suppressor unit that correlates with the activation of hTERT transcription. Silencing HBZ or menin expression in ATL cells confirms that these proteins are differentially involved in telomerase regulation. These results propose that HBZ, by impeding the tumor-suppressor activity of menin, functions as a leukemogenic cofactor to upregulate gene transcription and promote JunD-mediated leukemogenesis.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Proteína p300 Associada a E1A/metabolismo , Regulação Neoplásica da Expressão Gênica , Leucemia de Células T/patologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Telomerase/genética , Proteínas Virais/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Fatores de Transcrição de Zíper de Leucina Básica/genética , Western Blotting , Proliferação de Células , Imunoprecipitação da Cromatina , Proteína p300 Associada a E1A/genética , Células HeLa , Humanos , Imunoprecipitação , Leucemia de Células T/genética , Leucemia de Células T/metabolismo , Regiões Promotoras Genéticas/genética , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-jun/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase em Tempo Real , Proteínas dos Retroviridae , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Telomerase/metabolismo , Transcrição Gênica , Células Tumorais Cultivadas , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/genética
7.
J Gen Virol ; 94(Pt 1): 1-19, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23079381

RESUMO

The human immunodeficiency virus (HIV) and acquired immunodeficiency syndrome (AIDS) pandemic is amongst the most important current worldwide public health threats. While much research has been focused on AIDS vaccines that target the surface viral envelope (Env) protein, including gp120 and the gp41 ectodomain, the C-terminal tail (CTT) of gp41 has received relatively little attention. Despite early studies highlighting the immunogenicity of a particular CTT sequence, the CTT has been classically portrayed as a type I membrane protein limited to functioning in Env trafficking and virion incorporation. Recent studies demonstrate, however, that the Env CTT has other important functions. The CTT has been shown to additionally modulate Env ectodomain structure on the cell and virion surface, affect Env reactivity and viral sensitivity to conformation-dependent neutralizing antibodies, and alter cell-cell and virus-cell fusogenicity of Env. This review provides an overview of the Env structure and function with a particular emphasis on the CTT and recent studies that highlight its functionally rich nature.


Assuntos
Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/metabolismo , HIV/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/metabolismo , Animais , HIV/química , HIV/imunologia , Proteína gp41 do Envelope de HIV/imunologia , Humanos , Relação Estrutura-Atividade , Proteínas do Envelope Viral/imunologia
8.
Retrovirology ; 4: 92, 2007 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-18078517

RESUMO

BACKGROUND: Activation of telomerase is a critical and late event in tumor progression. Thus, in patients with adult-T cell leukaemia (ATL), an HTLV-1 (Human T cell Leukaemia virus type 1)-associated disease, leukemic cells display a high telomerase activity, mainly through transcriptional up-regulation of the human telomerase catalytic subunit (hTERT). The HBZ (HTLV-1 bZIP) protein coded by the minus strand of HTLV-1 genome and expressed in ATL cells has been shown to increase the transcriptional activity of JunD, an AP-1 protein. The presence of several AP-1 binding sites in the hTERT promoter led us to investigate whether HBZ regulates hTERT gene transcription. RESULTS: Here, we demonstrate using co-transfection assays that HBZ in association with JunD activates the hTERT promoter. Interestingly, the -378/+1 proximal region, which does not contain any AP-1 site was found to be responsible for this activation. Furthermore, an increase of hTERT transcripts was observed in cells co-expressing HBZ and JunD. Chromatin immunoprecipitation (ChIP) assays revealed that HBZ, and JunD coexist in the same DNA-protein complex at the proximal region of hTERT promoter. Finally, we provide evidence that HBZ/JunD heterodimers interact with Sp1 transcription factors and that activation of hTERT transcription by these heterodimers is mediated through GC-rich binding sites for Sp1 present in the proximal sequences of the hTERT promoter. CONCLUSION: These observations establish for the first time that HBZ by intervening in the re-activation of telomerase, may contribute to the development and maintenance of the leukemic process.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Telomerase/biossíntese , Transcrição Gênica , Regulação para Cima , Proteínas Virais/metabolismo , Imunoprecipitação da Cromatina , DNA/metabolismo , Dimerização , Humanos , Regiões Promotoras Genéticas , Ligação Proteica , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Proteínas dos Retroviridae , Fator de Transcrição Sp1/metabolismo , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...